

Ain Shams University Faculty of Science Chemistry Department

Preparation and Characterization of Composite Reverse Osmosis Membranes and Its Application for Saline Water Desalination

A Thesis submitted for PH.D.

By

Amera Marey Mohammed Hassanien M.Sc. (2009)

A THESIS SUBMITTED

By Amera Marey Mohammed Hassanien

M. Sc. (2009)

Under Supervision of

	Approved
1. Dr. Maher Abd El Aziz El Hashash	•••••
Prof. of Organic chemistry	
Chemistry dept., faculty of Science, Ai	n Shams University
2. Dr. Mohamed Ahmed Mekewi	••••••
Prof. of Polymer chemistry	
Chemistry dept., faculty of Science, A	in Shams University
3. Dr. Dalal Basanty Guirguis	••••••
Assistant Professor of Organic chemist	try
Chemistry dept., faculty of Science, Air	n Shams University

Head of Chemistry Department

Prof.Dr. Hesham Ahmed Madian

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

The author would like to express her deepest gratitude's to **Dr. Maher Abd El Aziz El Hashash**, Prof. of Organic chemistry, chemistry department, faculty of science, Ain Shams University, for suggesting the research point and supervising the thesis and his valuable discussions and kind cooperation.

My appreciation is obliged to **Dr. Mohammed Ahmed Mekewi**, Prof. of polymers, chemistry department, faculty of science, Ain Shams University, for his effective guidance, fruitful discussions and sincere assistance to bring the present work to its deserved level of acceptance.

Many sincere are also due to **Dr. Dalal Besanty Guirguis**, assistant Professor of organic chemistry, for her kind help and support for carrying out this work.

Finally, my gratitude's are sincerely due to my family especially husband whose devotions and sincere understanding was my motive to accomplish this work in its presented form.

The present work

In the present study, thin film PVA/CA+PEG membranes are to be prepared and the PVA layer to be cross-linked by varying maleic acid concentration at different reaction periods. The polymer composite is to be employed for the reverse osmosis process of brackish, saline and sea water purification. The water flux and salt rejection selectivity of the RO membranes are to be monitored. The structural characterization of the polymer composite membranes, degree of crosslinking, crystallinity, surface roughness and hydrophobicity of the thin CA layers are to be emphasized using FT-IR, SEM, X-ray diffraction and the thermal stability viability through TGA performance.

Two factors must be balanced for a reverse osmosis membrane to work properly, namely, water permeability and salt rejection. Both water flux and salt rejection are also dependent on membrane properties, solution chemistry, and operating conditions. Finally, the antimicrobial activities of the synthesized membranes are to be assessed.

Thesis frame-work

The thesis is presented in a sequential structure in order to fulfill the requirements of the objectives and scope of the study. The thesis is presented in the following chapters:

Chapter 1: Introduction

Chapter 2: Experimental and methodology.

Chapter 3: Results and Discussion.

A -Synthesis, characterization and

performance of reverse osmosis membranes.

B- Application of synthetic PVA+CA&PEG composite membranes in desalination of saline water.

Summary and Conclusions

References

Arabic Abstract

List of symbols and abbreviations

Abbreviation

Atomic force microscopy (AFM)

Cellulose acetate (CA)

Differential scanning microscope (DSC)

Electric conductivity (EC)

Escherichia coli (E.coli)

Fourier transform infrared spectroscopy(FTIR)

Membrane distillation (MD)

(MF)Membrane filtration

Nano filtration (NF)

Polyacrylic acid (PAA)

Polyethylene glycol (PEG)

Polyvinyl alcohol (PVA)

Reverse osmosis (RO)

Staphylococcus-aureus(S-ureus)

Scanning electron microscope (SEM)

Total dissolved solid (TDS)

Thin film composite (TFC)

Thermal gravimetric analysis (TGA)

Ultra- (UF)

filtration

List of symbols and abbreviations

Total dissolved solids (TDS)

Total dissolved solids

LIST OF CONTENTS

Ackı	nowledgement	I
List of Content		II
List	of Figures	VII
List	of Tables	IX
Abst	ract	XI
List	of Symbols and Abbreviations	XIII
	CHAPTER (I)	
	INTRODUCTION	
1	General Outline	1
2	Water desalination review and literature	3
	2.1 Distillation process	3
	2.2 Solar evaporation	4
	2.3 Freezing process	4
	2.4 Ion exchange process	5
	2.5 Electro dialysis process	5
	2.6 Membrane Filtration	6
	2.7 Reverse osmosis (RO)	6
3	Membrane technology	8
4	Synthetic polymers and composite separation	11
	membranes	
5	Desalination of saline water using reverse	29
	osmosis membranes	
6	Antimicrobial effect on the synthetic membrane	33
	and desalinated water quality	

CHAPTER (II) EXPERMENTAL AND METHODOLOGY

	Advantages of the reverse osmosis process	42
	Materials and Methodology	43
1	Chemicals	43
2	Membrane Preparation	44
	2.1 Microporous PVA support membrane	44
	2.2 Fabrication of composite membranes (dip	45
	Coating method)	
	2.3 Swelling measurement of the dip coating	47
	Membranes	
3	Membrane characterization and functional	47
	features	
	3.1 FT-IR spectroscopic analysis	47
	3.2 Microstructure studies	48
	3.3 Thermal stability profile (TGA)	48
	3.4 Mechanical properties	48
	3.5 Reverse Osmosis measurement	49
	3.6 Antimicrobial studies	51

CHAPTER (III) RESULTS AND DISCUSSIONS PART A

Synthesis, Characterization and Performance of Reverse Osmosis Membranes

	General Outline	52
1	Membrane synthesis optimization factors	53
	•	53
	1.1 Cellulose acetate bilayering	54
	1.2 Polyethylene glycol (PEG) addition effect	56
	1.3 Cross-linking agent concentration effect	57
	1.4 Effect of reaction temperature	58
2	1.5 Effect of overall reaction time Effect of membrane thickness on RO	59
3	efficiency	60
	Effect of chemical treatment on the membrane	
4	Chemistry	61
5	Effect of solvent evaporation	63
6	Effect of feed concentration	64
7	Effect of applied pressure	66
8	Effect of operation time	67
O	Synthetic membranes characterization	67
	8.1 Structural characterization studies by	07
	FT-IR Spectroscopy	70
9	Microstructure and topographical features	70
9	9.1Scanning electron microscopy studies (SEM)	71
	9.2 Atomic force microscopy (AFM)	74
10	Synthetic membranes thermal stability studies	75
11	Mechanical properties	77

CHAPTER (3) RESULTS AND DISCUSSIONS PART B

Applications of synthetic PVA/CA reverse osmosis membranes in the desalination process of natural saline water

1	PVA/CA RO membranes and effect of PEG	83
2	addition viability	0.5
2	Calibration of RO properties of PVA/CA	85
3	composite membranes	86
3	Application of PAC ₂₅ RO membrane in the desalination of water	80
		86
	3.1 Desalination of highly saline water (sea water)	80
	3.2 Desalination of brackish water	87
	3.3 Desalination of sea water (extremely	88
	saline water)	0.2
4	Electrolyte permeation mechanism through the	93
	synthetic reverse osmosis membrane	
5	Antimicrobial activity and RO synthetic	98
	membrane	
	5.1 Microorganisms profiles in sea water	98
	5.2 Which microorganisms in water cause	100
	diseases?	
	5.3 Development of antimicrobial membranes	104
	via the surface of RO composite membrane	
	5.4 Evaluation of PEG modified PVA/CA RO	104
	membrane antimicrobial activity	
	5.5 Antimicrobial protection	107

Summary and Conclusions	109-110
References	111-118
Arabic Summary	1-2

LIST OF FIGURES

List of Figures		
No	Description	Page
1	Schematic cross-linking mechanism of PVA	44
2	The principle of operation of. membrane processing	46
3	Schematic representation of membrane distillation with a composite membrane	46
4	Reverse osmosis system, model Lab.20	50
5	Feed circulating pump& R.O Module	50
6	Effect of membrane thickness on the performance of pure composite $PAC_{25} + PEG$ membrane	55
7	Effect of reaction temperature on swelling, conversion and water insoluble part (%) of $PAC_{25} + PEG$	58
8	Effect of reaction time on swelling, of $PAC_{25} + PEG$	59
9	Effect of applied pressure on salt rejection and water flux of: :(M_1 is PVA), (M_2 is PAC25) and (M_3 is PAC25 + PEG) composite membrane	65
10	Effect of operation time on reverse osmosis performance of Pac25 and PAC ₂₅ +PEG) composite membrane	67

LIST OF FIGURES

11	(a) FT-IR spectroscopic features of pure polyvinyl alcohol (PVA)	68
	(b) FT-IR spectroscopic features of crosslinked polyvinyl alcohol PVA _I	68
	(c) FT-IR spectroscopic features of PAC ₂₅	69
	(d) FT-IR spectroscopic features of PAC ₂₅ + PEG	70
12	(A): SEM of PVA at different malice acid concentration	72
	(B): SEM of (a) pure cellulose acetate, (b) PVA-CA	74
	membrane and (c) PVA-CA&PEG composite membranes	
13	AFM images showing the 2D and 3D surfaces of (a) CA, (b)	75
	PAC_{25} and (c) PAC_{25} +PEG membranes	
14	Thermo-gravimetric diagram showing the effect of PEG	77
	grafting on thermal stability of polyvinyl alcohol and	
	cellulose acetate membranes.	
	$A = PAC_{25}$ and $B = PAC_{25} + PEG$	
15	Electrolyte transport through reverse osmosis (RO) (A)	97
	may occur through two path ways (B) Ion-pair	
	mechanism and (C) Coupled transport of ions	
	Mechanism	
16	Images of Gram-ve and Gram +ve bacteria on the PEG	107
	modified PAC ₂₅ RO membrane	

LIST OF TABLES

List of Tables

No.	Description	Page
1	Effect of CA addition on the PVA membrane reverse	54
1	osmosis parameters.	51
2	Effect of PEG addition on PAC ₂₅ membrane on reverse osmosis parameters.	55
3	Effect of crosslinking agent concentration on the membrane swelling characterization.	57
4	Effect of membrane thickness on reverse osmosis parameters.	60
5	Effect of chemical treatment or quaternization on the swelling of PAC ₂₅ composite membrane	61
6	Effect of evaporation temperature on RO parameters	61
7	Effect of evaporation time on RO parameters	62
8	Effect of feed concentration on reverse osmosis Parameters.	64
9	The mechanical properties for some synthetic composite reverse osmosis membranes.	79
10	The selected reverse osmosis membranes used as desalination in saline water.	83
11	Reverse osmosis functional parameters for the selected membranes	84