

Monte Carlo Study of the Transport Properties in Some Semiconductors

Thesis

Submitted in the Partial Fulfillment for M.Sc. Degree in Solid State Physics

To

Physics Department
Faculty of Girls for Art, Science and
Education, Ain Shams University

By

Nesreen Taha Mokhtar

B.Sc. in Physics, 1999

2005

Monte Carlo Study of the Transport Properties in Some Semiconductors

Thesis

Submitted in the Partial Fulfillment for M.Sc. Degree in Solid State Physics

To

Physics Department
Faculty of Girls for Art, Science and
Education, Ain Shams University

By Nesreen Taha Mokhtar B.Sc. in Physics, 1999

Supervisors

Prof. Dr. Mohyi El - Din Abd El Lattif Kenawy

Department of Physics,
Faculty of Girls,
Ain Shams University, Cairo, Egypt

Assist. Prof. Dr. Salwa Moustafa Abd El Wahab

Department of Physics,
Faculty of Girls,
Ain Shams University, Cairo, Egypt

Assist. Prof. Dr. *Fadl Allah Mohammed Abu El-Ela*

Department of Physics,
Faculty of Girls,
Ain Shams University, Cairo, Egypt

Approval sheet

Student Name: Nesreen Taha Mo	khtar "B.Sc. in Physics, 1999".
Thesis Title : Monte Carlo St Sin Some Semicon Submitted in the Degree in Solid S	Partial Fulfillment for M.Sc.
Supervisors Committee:	
• Prof. Dr. Mohyi El-Din Abd E	Il Lattif Kenawy
Department of Physics, Faculty of Girls, Ain Shams University, Cairo, Egypt	
• Assist.Prof.Dr. Salwa Moustafa	Abd El Wahab
Department of Physics, Faculty of Girls, Ain Shams University, Cairo, Egypt	
• Assist.Prof.Dr. Fadl Allah Moha	mmed Abu El-Ela
Department of Physics, Faculty of Girls, Ain Shams University, Cairo, Egypt	
Date of research: / /	
Post Graduate Studies Departmen	ıt —
Approval Stamp	Approval Date: / /
Faculty Council Approval	University Council Approval
Date: / /	Date: / /

Dedicated

To

My Parents,

My Sisters,

My Friends,

and

My Sweet Daughter

Mona

Acknowledgement

I humbly kneel to **ALLAH** thanking **HIM** for showing me the right path, without **HIS** help my efforts would have gone astray.

I would like hereby to express my sincere appreciation and gratitude for:

• Prof. Dr. Mohyi El-Din Abd El Lattif Kenawy

Department of Physics, Faculty of Girls, Ain Shams University, Cairo, Egypt

Assist. Prof. Dr. Salwa Moustafa Abd El Wahab

Department of Physics, Faculty of Girls, Ain Shams University, Cairo, Egypt

Assist. Prof. Dr. Fadl Allah Mohammed Abu El-Ela

Department of Physics,
Faculty of Girls,
Ain Shams University, Cairo, Egypt

for their kind supervision, continuous encouragement and fruitful discussions throughout the period of this work.

As well as the whole *Department of Physics*, *Faculty of Girls*, *Ain Shams University* for their kind support and encouragement during my work.

<u>Contents</u>

Contents

List of Ta	igures in the same in the same is the same	ii xi
Chapter	Contents Pag	ge
1	Introduction	1
2	Transport Theory and Scattering Mechanisms	11
	2.1 Introduction	11
	2.2 The Boltzmann Transport Equation	11
	2.3 Band Structure	17
	2.4 Scattering Mechanisms	23
	2.4.1 Lattice Vibration Scattering	
	2.4.2 Defect Scattering Mechanism	
3	Theory of Scattering and Total Scattering Rates of Various Scattering Mechanisms	33
	3.1 Theory of Scattering	33
	3.2 Scattering Probabilities	36
	3.2.1 Non-Equivalent Intervalley Phonon Scattering	36
	3.2.2 Equivalent Intervalley Phonon Scattering 4 3.2.3 Polar Optical Phonon Scattering	

	Scattering 5.	3
	3.2.5 Acoustic Phonon Scattering 5	
	3.2.6 Piezoelectric Phonon Scattering 6	
	3.2.7 Ionised Impurity Scattering 6	
	3.2.8 Alloy Scattering	
4	The Monte Carlo Method and Its Applications in	
	Semiconductors 8	5
	4.1 The Monte Carlo Method 8	5
	4.1.1 Initial Conditions of Motion8	9
	4.1.2 Free Flight Time 9	0
	4.1.3 Selecting the Scattering Process 9.	3
	4.1.4 Selecting the Final State 9	8
	4.1.5 Collecting the Average Transport Quantities 10	
	4.1.6 Ensemble Monte Carlo 10	1
	4.2 Velocity Overshoot 10	6
5	Results and Discussion 10	9
	5.1 GaAs 11	2
	5.2 InP 13	
	5.3 GaInAs 15	
\limits	Conclusions18	1
\langle	References18	5
\pi	Summary in Arabic	

List of Figures

Figure	Page
Fig. [2.1]:	Schematic representation of the semi-classical trajectory of an electron in $\overline{\mathbf{k}}$ space under the influence of an electric field [Fawcett - 1973]
Fig. [2.2]:	(a) The <i>First Brillouin Zone</i> for the face-centered cubic, diamond and zinc blende structures. Also shown are symmetry points and directions of the <i>First Brillouin Zone</i> [<i>Shur-1990</i>].
	(b) Structure of the reduced <i>Brillouin Zone</i> of GaAs [Antoncik - 1973]
Fig. [2.3]:	The lattice structure of zinc blende crystal [Antoncik - 1973]
Fig. [2.4]:	Schematic representation of the energy band structure of GaAs in <000>, <100> and <111> directions [Blakemore - 1985]
Fig. [2.5]:	Important minima of the conduction band and maxima of the valence band in cubic semiconductors [Shur-1990]
Fig. [2.6]:	(a) Spherical constant energy surface for the lowest G minimum of the conduction band in GaAs in the First Brillouin Zone [Shur-1990].
	(b) Energy surface contours in the L valley [Antoncik - 1973].

<u>List of Figures</u> <u>iv</u>

((c) Energy surface contours in the x valley [Antoncik - 1973]
O – –	Dispersion curves for lattice vibrations in semiconductors [Nag-1980]27
	Energy gap in the presence of an acoustic wave [Nag-1980]27
6	The <i>Non-Equivalent Intervalley Phonon Scattering Rate</i> 'emission and absorption'' as a function of energy at 800 K
(a)	From the G valley to L and X valleys in GaAs
(b)	From the G valley to L and X valleys in InP
(c)	From the G valley to L and X valleys in GaInAs
(d)	From the L valley to G and X valleys in $GaAs$
(e)	From the L valley to G and X valleys in InP
(f)	From the L valley to G and X valleys in $GaInAs$
(g)	From the X valley to G and L valleys in GaAs 40 41
(h)	From the \boldsymbol{X} valley to \boldsymbol{G} and \boldsymbol{L} valleys in \boldsymbol{InP}
(i)	From the X valley to G and L valleys in GaInAs 41 42

<u>List of Figures</u> v

0	-	nt Intervalley P	Phonon .	Scattering	g Rate as a
İ	function of ene	ergy at 300 K			
(a)	Emission,	absorption	and	total	scattering
	rate in the L	valley of GaA	s	•••••	44
(b)	Emission,	absorption	and	total	scattering
	rate in the L	valley of InP		•••••	44
(c)	Emission,	absorption	and	total	scattering
	rate in the L	valley of GaIn	As	••••••	44
(d)	Emission,	absorption	and	total	scattering
	rate in the X	valley of GaA	s	••••••	44
(e)	Emission,	absorption	and	total	scattering
	rate in the X	valley of InP .	• • • • • • • • • • •	•••••	44
(f)	Emission,	absorption	and	total	scattering
	rate in the X	valley of in Ga	aInAs .	•••••	44
(g)	Total scatteri	ing rate in the	L and	X valle	ys of GaAs
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	45
(h)	Total scatteri	ing rate in the	L and	\mathbf{X} vall	leys of InP
	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	45
(i)		ng rate in the $f I$		•	
(i)		ng rate in the I		•	
(i)		•		•	
Fig. [3.3]:	 Гhe <i>Polar Ор</i>	tical Phonon So	••••••	•••••	45
Fig. [3.3]:	•••••	tical Phonon So	••••••	•••••	45
Fig. [3.3]:	The <i>Polar Op</i> of energy at 3 0	tical Phonon So	catterin _s	g Rate as	45 a function
Fig. [3.3]:	The <i>Polar Op</i> of energy at 3 0 Emission,	tical Phonon So	cattering	g Rate as	45 s a function scattering
Fig. [3.3]: (a)	The <i>Polar Op</i> of energy at 30 Emission, rate in the G	tical Phonon So 00 K absorption	cattering and	g Rate as	s a function scattering50
Fig. [3.3]: (a)	The Polar Op of energy at 30 Emission, rate in the G Emission,	tical Phonon So 00 K absorption valley of GaAs	and and	g Rate as total total	s a function scattering scattering scattering
Fig. [3.3]: (a) (b)	The Polar Op of energy at 30 Emission, rate in the G Emission, rate in the G	tical Phonon So 00 K absorption valley of GaAs absorption	and and	g Rate as total total	
Fig. [3.3]: (a) (b)	The Polar Op of energy at 30 Emission, rate in the G Emission, rate in the G Emission,	tical Phonon So 00 K absorption valley of GaAs absorption valley of InP	and and and and	g Rate as total total total	s a function scattering 50 scattering scattering scattering
Fig. [3.3]: (a) (b) (c)	The Polar Op of energy at 30 Emission, rate in the G	tical Phonon So 00 K absorption valley of GaAs absorption valley of InP absorption	and and and As	total total total	
Fig. [3.3]: (a) (b) (c)	The Polar Op of energy at 30 Emission, rate in the G Emission,	tical Phonon So 00 K absorption valley of GaAs absorption valley of InP absorption valley of GaIn	and and and As	total total total total	
Fig. [3.3]: (a) (b) (c) (d)	The Polar Op of energy at 30 Emission, rate in the G Emission, rate in the L	tical Phonon So 00 K absorption valley of GaAs absorption valley of InP absorption valley of GaIn absorption	and and and As	total total total total	

<u>List of Figures</u> vi

(f)	Emission,	absorption	and	total	scattering
	rate in the L	valley of in	GaInAs	•••••	50
(g)	Total scatte	ering rate	in the	G,	L and X
	valleys of G	aAs	• • • • • • • • • • • • • • • • • • • •	•••••	51
(h)	Total scatte	ering rate	in the	G , 1	L and X
	valleys of In	P	• • • • • • • • • • • • • • • • • • • •	•••••	51
(i)	Total scatte	ering rate	in the	G, L	\mathbf{x} and \mathbf{X}
	valleys of Ga	aInAs	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	51
O – –	The angular d	-		-	
	Scattering prol	oability for e	lectron en	ergies of	0.1 eV and
(0.4 eV at 300	K	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •	52
(a)	In GaAs.				
` ′	In InP.				
(c)	In GaInAs .				
O – –	The <i>Non-Pola</i> Function of energy	•		cattering	Rate as a
(a)	Emission,	absorption	and	total	scattering
	rate in the L	valley of Ga	aAs	•••••	55
(b)	Emission,	absorption	and	total	scattering
	rate in the L	valley of In	P	•••••	55
(c)	Emission,	absorption	and	total	scattering
	rate in the L	valley of Ga	aInAs	•••••	55
(d)	Emission,	absorption	and	total	scattering
	rate in the \mathbf{X}	valley of Ga	aAs	• • • • • • • • • • • • • • • • • • • •	55
(e)	Emission,	absorption	and	total	scattering
	rate in the \mathbf{X}	valley of In	P	• • • • • • • • • • • •	55
(f)	Emission,	absorption	and	total	scattering
	rate in the \mathbf{X}	valley of Ga	aInAs	• • • • • • • • • • • • • • • • • • • •	55
(g)	Total scatteri				
					56

<u>List of Figures</u> vii

(h) Total scattering rate in the L and X valleys of Inp
(i) Total scattering rate in the L and X valleys of GaInAs
Fig. [3.6]: The Acoustic Phonon Scattering Rate as a function of energy in the G, L and X valleys at 300 K
(a) In GaAs.(b) In InP.(c) In GaInAs.
Fig. [3.7]: The angular dependence of the <i>Acoustic Phonon Scattering</i> probability for electron energies of 0.1 eV and 0.4 eV at 300 K
 (a) In the G valley of GaAs. (b) In the G valley of InP. (c) In the G valley of GaInAs. (d) In the L valley of GaAs. (e) In the L valley of InP. (f) In the L valley of GaInAs.
Fig. [3.8]: The <i>Piezoelectric Phonon Scattering Rate</i> as a function of energy in the G, L and X valleys at 300 K
(a) In GaAs.(b) In InP.(c) In GaInAs.
Fig. [3.9]: (a) Schematic diagram for <i>Rutherford Scattering</i> [<i>Ridley - 1988</i>]
(b) Schematic representation of the electron conservation momentum in <i>Impurity Scattering</i>

<u>List of Figures</u> viii

[<i>Ridley</i> - <i>1988</i>]67
Fig. [3.10]: The <i>Brooks-Herring Impurity Scattering Rate</i> as a function of energy in the G, L and X valleys at 300 K
(a) For electrons with density 1′ 10 ²³ m ⁻³ in GaAs.
(b) For electrons with density 1′ 10 ²³ m ⁻³ in InP.
(c) For electrons with density 1′ 10 ²³ m ⁻³ in GaInAs.
(d) For electrons with density 1 '10 ²² m ⁻³ in GaAs.
(e) For electrons with density 1 '10 ²² m ⁻³ in InP.
•
(f) For electrons with density 1′ 10 ²² m ⁻³ in GaInAs.
(g) For electrons with density 1′ 10 ²¹ m ⁻³ in GaAs.
(h) For electrons with density $1' 10^{21} \text{ m}^{-3}$ in InP.
(a) For electrons with density 1′ 10 ²¹ m ⁻³ in GaInAs.
Fig. [3.11]: The <i>Ridley Impurity Scattering Rate</i> as a function of energy in the G, L and X valleys at 300 K
(a) For electrons with density 1′ 10 ²³ m ⁻³ in GaAs.
(b) For electrons with density 1′ 10 ²³ m ⁻³ in InP.
(c) For electrons with density 1′ 10 ²³ m ⁻³ in GaInAs.
(d) For electrons with density 1 '10 ²² m ⁻³ in GaAs.
(e) For electrons with density 1′ 10 ²² m ⁻³ in InP.
(f) For electrons with density 1′ 10 ²² m ⁻³ in GaInAs.
(g) For electrons with density 1′ 10 ²¹ m ⁻³ in GaAs.
(h) For electrons with density $1' 10^{21} \text{ m}^{-3}$ in InP.
(i) For electrons with density 1′ 10 ²¹ m ⁻³ in GaInAs.

Fig. [3.12]:	A comparison between the <i>Brooks-Herring Model</i> for
	carrier concentration $1' 10^{21} \text{m}^{-3}$ and the <i>Ridley Model</i>
	for carrier concentrations $1' 10^{21} \text{ m}^{-3}$, $1' 10^{22} \text{ m}^{-3}$ and
	$1' 10^{23} \text{ m}^{-3}$ in the G valley at 300 K
(b)	In GaAs. In InP. In GaInAs.
Fig. [3.13]:	A Brooks-Herring Model at 77 K and 300 K in the G
	valley for carrier concentration $1' 10^{23} \text{ m}^{-3}$
` '	In GaAs.
` ′	In InP. In GaInAs.
Fig. [3.14]:	A <i>Ridley Model</i> at 77 K and 300 K in the G valley for
	carrier concentration $1' 10^{23} \text{ m}^{-3}$
` '	In GaAs.
` ′	In InP. In GaInAs.
()	
Fig. [3.15]:	The Alloy Scattering Rate as a function of energy in the
	G , L and X valleys of Ga _{0.47} In _{0.53} As at 300 K
Fig. [3.16]:	Scattering rates for all scattering mechanisms as a
	function of energy in the L valley of GaAs at 300 K
Fig. [3.17]:	Scattering rates for all scattering mechanisms as a
	function of energy in the L valley of InP at 300 K

<u>List of Figures</u> x

Scattering rates for all scattering mechanisms as a function of energy in the L valley of GaInAs at 300 K
Flow chart for a <i>Monte Carlo</i> simulation [<i>Littlejohn et. al.</i> -1982]
Diagram showing the selection of the scattering process [Hockney & Eastwood - 1981] 94
The total scattering rate for the electrons in <i>Band I</i> and <i>Band II</i> as a function of wave number [<i>Hockney</i> & <i>Eastwood</i> - <i>1981</i>]
Representation for the electron coordinates 102
Sketch illustrating the synchronous-ensemble method [Jacoboni & Reggiani - 1983]
A typical electron orbit for a high scattering rate, showing several free flights per field-adjusting time step [Hockney & Eastwood - 1981]
The total and average electron drift velocity versus electric field in the G and L valleys of GaAs 114 At lattice temperature of 77 K. At lattice temperature of 150 K. At lattice temperature of 300 K.