

Effect of *Pleurotus Ostreatus* on the endothelial dysfunction in ovariectomized- diabetic rats.

A Thesis

Submitted for the degree of Master Science in Biochemistry as a partial fulfillment for requirements of the master degree of Science

Presented by

Heba Hassan Metwaly Hassan

(B.Sc. in Biochemistry – Faculty of Science, Ain Shams University, 2011)

Under Supervision of

Prof. Dr. Shadia Abdal Hameed Fathy
Professor of Biochemistry
Department of Biochemistry
Faculty of Science, Ain Shams University

Prof. Dr. Mehrevan Mustafa Abdal Moneim
Professor of Medical Biochemistry
Department of Medical Biochemistry
National Research Center

Dr. Magda Kamal Ezz

Assistant Professor of Biochemistry
Department of Biochemistry
Faculty of Science, Ain Shams University

Department of Biochemistry Faculty of science

Ain Shams University

2017

سورة النساء آية 113

Acknowledgment

I am deeply thankful to Allah, by the grace of whom the progress and success of this work was possible and without whose mercy and guidance this work would neither has been started nor completed.

I wish to express my sincere gratitude and appreciation to **Prof. Dr.**Shadia Abdal Hameed Fathy, Professor of Biochemistry, Faculty of Science,

Ain Shams University for her valuable supervision, kind directions,

generous help and her sincere effort to accomplish this work.

This thesis owes its existence to the help, support, and inspiration of many people. In the first place, I would like to express my sincere thanks and gratitude to **Prof. Dr. Mehrevan Mustafa Abdal Moneim**, Professor of Medical Biochemistry, Medical Biochemistry department, National Research Centre, for her kind supervision, generous support, and valuable advices that helped me in this work.

I wish also to express my sincere gratitude and appreciation to Dr.

Magda Kamal Ezz, Assistant Professor of Biochemistry, Faculty of Science, Ain Shams University, for her valuable supervision, meticulous observation, kind directions, generous help and her sincere effort to accomplish this work.

I am deeply honored to express with great appreciation my deep gratitude and thanks to **Prof. Dr. Mona Anwar El-Bana**, Researcher of Medical Biochemistry, National Research Centre, for her close supervision, patience, extra wisdom and guidance that helped me too much in this work. Without her help, this work would not be possible. It is an honor to be one of her students.

I would like to give my special thanks to all the members of the Medical Biochemistry department, National Research Centre; I owe them a great dept for their encouragement and cooperation through this work.

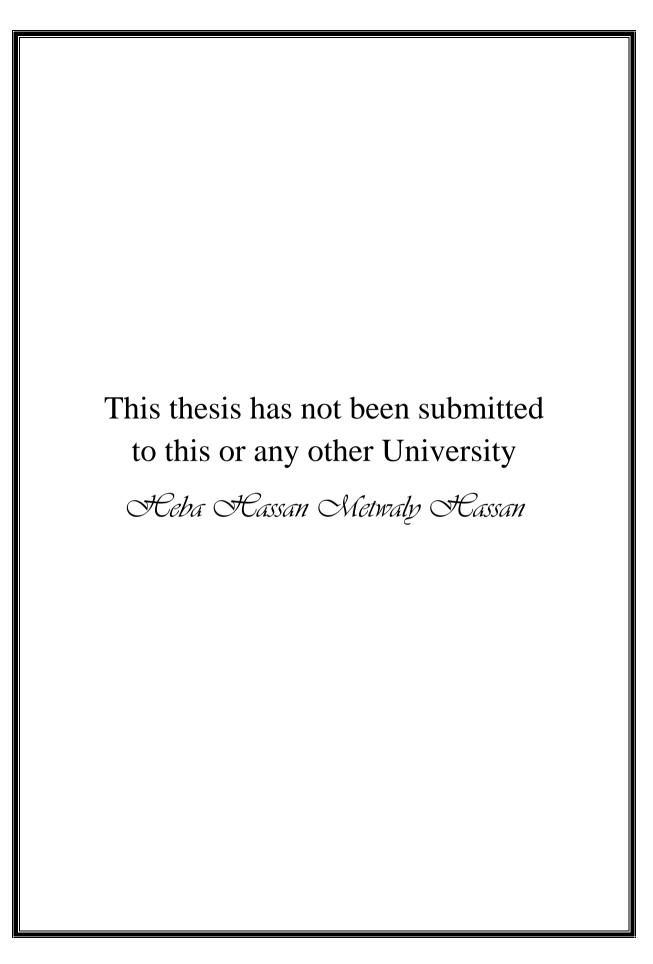
Last but not least, I take this opportunity to express my profound gratitude to my father, without him I would never have been able to achieve anything, God bless him. I wish also to express my sincere appreciation and thanks to my mother and my husband for their understanding, endless love, moral support, patience and encouragement which enabled me to complete this work.

Name: Heba Hassan Metwaly Hassan.

Date of graduation: June 2011, Faculty of Science,

Biochemistry Department,

Ain Shams University.


Degree awarded: B.Sc. in Biochemistry 2011

(Excellent with honor degree).

Occupation: Specialist at Medical Biochemistry

Department, Medical Research

Division, National Research Centre.

List of contents:-

List of abbreviations	II
List of figures	IV
List of tables	VI
Abstract	VII
Introduction	1
Aim of work	5
Structure of endothelium	6
function of endothelium	7
Endothelial dysfunction	19
Asymmetric dimethylarginine and its role in endothelial	21
dysfunction	
Mechanisms underlying endothelial dysfunction in diabetes	23
mellitus	
Mechanisms underlying endothelial dysfunction in Menopause	33
Pleurotus Ostreatus	36
Materials and methods	45
Results	76
Discussion	104
Summary	118
Conclusion	123
Recommendations	125
References	126
Arabic summary	

List of abbreviations

Abbreviations	Description
ADMA	Asymetric Dimethylargnine
AGE	Advanced Glycation End Products
Ang II	Angiotensin II
ATP	Adenosine Triphosphate
BH2	Dihydrobiopterin
BH4	Tetrahydrobiopterin
cAMP	Cyclic Adenosine Monophosphate
cGMP	Cyclic Guanosine Monophosphate
DDAH	Dimethylarginine Dimethylaminohydrolase
E2	Estrogen
ECs	Endothelial Cells
eNOS	Endothelial Nitric Oxide Synthase
ER	Estrogen Reseptor
ET	Endothelin
FFAs	Free Fatty Acids
GTP	Guanosine Triphosphate
HDL-C	High Density Lipoprotein – Cholesterol
HMG-CoA	3- Hydroxy-3-Methylglutaryl-CoA
HPLC	High Performance Liquid Chromatography
HRP	Horseradish Peroxidase
HRT	Hormone Replacement Therapy
HTGL	Hepatic Triglyceride Lipase
ICAM-1	Intercellular Adhesion Molecule-1
IL	Interleukins
iNOS	Inducible Nitric Oxide Synthase
IR	Insulin Resistance
LCAT	Lecithin: Cholesterol Acyltransferase
LDL-C	Low Density Lipoproteins-Cholesterol
NAD	Nicotinamide Adenine Dinucleotide
NADPH	Nicotinamide Adenosine Dinucleotide
	Phosphate
NF-к β	Nuclear Factor Kappa β
nNOS	Neuronal Nitric Oxide Synthase

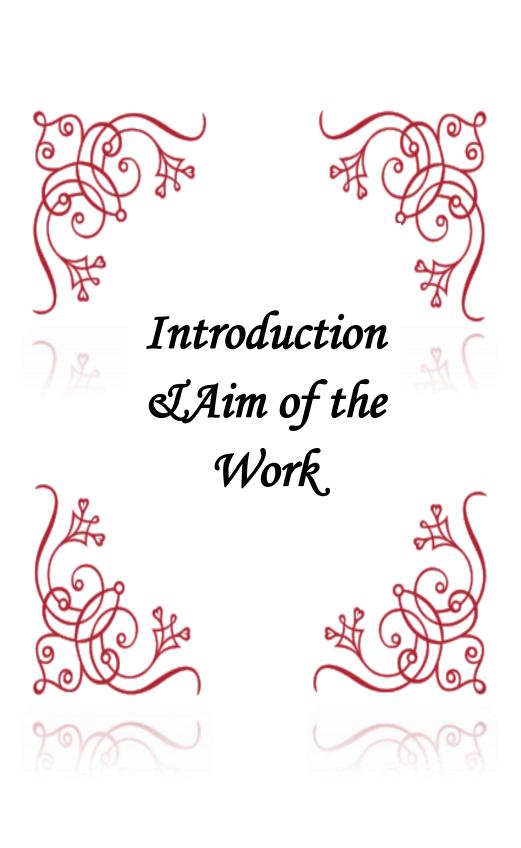
NO	Nitric Oxide
NOS	Nitric Oxide Synthase
NOx	Nitrite/ Nitrate
O_2 •	Superoxide Anion
OD	Optical Density
ОН	Hydroxyl Radical
OPA	O-Phthaldialdehyde
OVX	Ovariectomized
PAI-1	Plasminogen Activator Inhibitor Type 1
PKA	Protein Kinase A
PKC	Protein Kinase C
PKG	Protein Kinase G
PON	Paraoxonase
ROS	Reactive Oxygen Species
SAM	S-Adenosylmethionine
SMC	Smooth Muscle Cell
5-SSA	5-Sulfosalicylic Acid
STZ	Streptozotocin
TAG	Triacylglycerol
TF	Tissue Factor
THF	Tetrahydrofuran
TNF-α	Tumor Necrosis Factor Alpha
t-PA	Tissue Plasminogen Activator
VCAM-1	Vascular Cell Adhesion Molecule-1
VECs	Vascular Endothelial Cells
VLDL	Very Low Density Lipoproteins

List of figures

No.	Title	Page no.
1	Microradiograph of human artery showing the endothelium	7
2	Metabolic and synthetic functions of endothelial cells	8
3	Regulation of vascular reactivity	9
4	Production of nitric oxide by endothelial cells	11
5	Mechanisms of endothelial dysfunction	20
6	Overview of pathways of synthesis and metabolism of ADMA	22
7	Mechanisms of endothelial dysfunction in diabetic state	23
8	Endothelial dysfunction under insulin resistance and hyperinsulinemia	25
9	Hyperglycemia-induced PKC activation affecting multiple cellular functions	27
10	Role of aldose reductase in hyperglycemia- induced oxidative stress	28
11	Pathophysiological effects and the interplay between increased plasma cholesterol and O ₂ · levels, and endothelial cell responses	30
12	Mechanisms for oxidant stress-induced endothelial dysfunction	32
13	Effect of inhibition of HMG-COA reductase by statin	41
14	Standard curve of insulin	65
15	Comparison between mean values of plasma glucose in the different studied groups.	78
16	Comparison between mean values of serum insulin in the different studied groups.	79
17	Comparison between mean values of plasma estrogen in the different studied groups.	82
18	Comparison between mean values of serum cholesterol in the different studied groups.	86

19	Comparison between mean values of serum	86
	triacylglycerol in the different studied groups.	
20	Comparison between mean values of serum	87
	HDL-cholesterol in the different studied groups.	
21	Comparison between mean values of serum	87
	LDL-cholesterol in the different studied groups.	
22	Comparison between mean values of serum	90
	paraoxonase in the different studied groups.	
23	Comparison between mean values of serum	91
	tissue NO_X in the different studied groups.	
24	Comparison between mean values of plasma	94
	ADMA in the different studied groups.	
25	Comparison between mean values of tissue t-PA	95
	in the different studied groups.	
26	Correlation between plasma glucose and ADMA	97
27	Correlation between plasma glucose and insulin	97
28	Correlation between plasma glucose and NOx	97
29	Correlation between plasma glucose and PON1	98
30	Correlation between plasma glucose and t-PA	98
31	Correlation between plasma estrogen and NOx	100
32	Correlation between plasma estrogen and PON1	100
33	Correlation between plasma estrogen and t-PA	101
34	Correlation between plasma estrogen and	101
	ADMA	
35	Correlation between Plasma ADMA and NOx	103

List of tables


No.	Title	Page no.
1	Magazztai anto of Docatos atua	27
1	Macronutrients of <i>P. ostreatus</i>	37
2	Amino acids composition of <i>P. ostreatus</i>	39
3	Gradient program for the separation of ADMA	73
4	Levels of fasting blood sugar and serum insulin	77
	in different studied groups.	
5	Levels of plasma estrogen in different studied	81
	groups.	
6	Levels of lipid profile in different studied	85
	groups.	
7	Levels of serum paraoxonase and tissue NOx in	89
	different studied groups.	
8	Levels of plasma ADMA and tissue t-PA in	93
	different studied groups.	
9	Correlation between plasma glucose level and all	96
	investigated parameters	
10	Correlation between plasma estrogen level and	99
_	all investigated parameters	
11	Correlation between ADMA and NOx	102

Abstract

The present study was designed to evaluate the Effect of Ostreatus on the endothelial dysfunction ovariectomized- diabetic rats. The study was performed on 70 female sprague-dawley rats divided into 7 groups: healthy rats served as control group, healthy rats received orally 100 mg/kg body weight mushroom, healthy rats received orally 200 mg/kg body weight mushroom, sham group, ovariectomized - diabetic rats, treated ovariectomized - diabetic rats received orally 100 mg/kg body weight mushroom, treated ovariectomized diabetic rats received orally 200 mg/kg body weight mushroom. Fourty female rats underwent either sham-surgery or bilateral ovariectomy. Experimental diabetes was induced by single subcutaneous injection of 50mg/kg body weight streptozotocin. After six weeks blood samples were collected for assessment of serum insulin, serum total cholesterol (TC), triacylglycerol (TAG), low density lipoprotein – cholesterol (LDL-C), high lipoprotein-cholesterol (HDL-C) density and serum paraoxonase (PON1), fasting blood sugar (FBS), plasma estrogen and plasma asymmetric dimethylargnine (ADMA) and aorta tissue samples were harvested to determine nitrite and nitrate (NOx) and tissue plasminogen activator (t-PA). Mean levels of TAG, LDL-C, FBS were significantly decreased and HDL-C, insulin, NOx, PON1 and t-PA were significantly increased in treated Ovx - diabetic group received orally 200 mg/kg body weight mushroom compared to treated Ovx - diabetic group received orally 100 mg/kg body weight mushroom. On the other hand no significant difference was observed between the two groups regarding in total cholesterol, estrogen and ADMA.

Conclusion

It has been demonstrated that the *Pleurotus Ostreatus* has favorably effects on serum lipids, improves endothelium-dependent vasodilation, increases antioxidant and estrogen level and decreases intravascular thrombus propagation. These findings have generated proposed mechanisms for *Pleurotus Ostreatus* to improve endothelial dysfunction and protect against the development of atherosclerosis in ovariectomized-streptozotocin rats

