

> حدق الله العظيم (سورة البقرة ٢٨٦)

Acknowledgment

I would like to express my deep and sincere gratitude to *Professor Dr. Yehya Abdul Aziz Mostafa*, Head of Department of Orthodontics, Faculty of Oral and Dental Medicine, Cairo University, under whose supervision I chose the subject of my research and began my thesis, for his inspiration, understanding, encouragement and personal guidance.

My warm thanks are due to *Dr. Amr Emad El-Dakroury*, Professor of Orthodontics, Faculty of Oral and Dental Medicine, Cairo University for his kind support and guidance that have been of great value to me.

I am grateful to my supervisor, *Dr. Khaled Hazem Attia*, Associate Professor of Orthodontics, Faculty of Oral and Dental Medicine, Cairo University, for his detailed and constructive comments and excellent advice during the preparation of this thesis, and important support throughout this work.

I owe my sincere gratitude to *Or. Ahmad Mohamed El-Bialy*, Associate Professor of Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, who gave me the opportunity to work with him and who provided me with untiring help during my difficult moments, for his extensive advice and support.

His extensive discussions around my work have been very helpful for this study.

My sincere appreciation is due to *Dr. Foud Sharaby*, Assistant lecturer of Orthodontics, Faculty of Oral and Dental Medicine, Cairo University, for his guidance and support in the course of the completion of this thesis.

During this work I have collaborated with many colleagues for whom I have great regard, and I wish to extend my warmest thanks to all those who have helped me with my work.

I dedicate this to my country, which I miss,

To my wonderful family,

To my dear husband for his loving care and understanding.

Table of contents

•	Table of Contents	Ι
•	List of Tables	II
•	List of Figures	IV
•	Introduction	1
•	Review of Literature	3
•	Aim of the study	31
•	Materials and Methods	32
•	Results	60
•	Discussion	77
•	Summary & Conclusion	84
•	References	86
•	Arabic summary	

List of Tables

Table No.	Title		
Table 1	Represents descriptive statistics for comparison the linear measurements between digital lateral	62	
	cephalogram and lateral cephalogram derived from three-dimensional computed tomography. (Group A)		
T 11 0		- (2	
Table 2	Represents descriptive statistics for comparison the angular measurements between digital lateral	63	
	cephalogram and lateral cephalogram derived from three-dimensional computed tomography. (Group A)		
Table 3	Represents descriptive statistics for comparison the	64	
	linear measurements between film based lateral		
	cephalogram and lateral cephalogram derived from		
	three-dimensional computed tomography (Group A)		
Table 4	Represents descriptive statistics for comparison the	65	
	angular measurements between film based lateral		
	cephalogram and lateral cephalogram derived from		
	three-dimensional computed tomography. (Group A)		
Table 5	Represent descriptive statistics for comparison the	67	
	linear measurements between digital lateral		
	cephalogram and lateral cephalogram derived from		
	three-dimensional cone beam computed tomography.		
	(Group B)		

Table No.	Title					
Table 6	Table 6 Represent descriptive statistics for comparison the					
	angular measurements between digital lateral					
	cephalogram and lateral cephalogram derived from					
	three-dimensional cone beam computed tomography.					
	(Group B)					
Table 7	Represent descriptive statistics for comparison between	70				
	Lateral cephalogram, LC derived from spiral three-					
	dimensional computed tomography, LC derived from					
	three-dimensional cone beam computed tomography					
	measurements and direct measurements on the skull.					
	(Group C)					
Table 8	8 Showing the Concordance Correlation Coefficient and					
	Pearson Correlation Coefficient among the intra-					
	observer readings.					
Table 9	Limits of agreement of intra-observer results					
Table 10	ole 10 Showing the Concordance Correlation Coefficient and					
	Pearson Correlation Coefficient among the inter-					
	observer readings.					
Table 11	Limits of agreement of inter-observer results	76				

List of Figures

Fig. No	Title	Page	
Figure 1	Traced digital lateral cephalogram	34	
Figure 2	Patient positioning in spiral CT machine	37	
Figure 3	Scout image obtained from spiral computed tomography	38	
	machine		
Figure 4	Lateral cephalogram captured from three-dimensional	39	
	computed tomography		
Figure 5	Patient positioning in cone beam computed tomography	42	
	machine		
Figure 6	Lateral cephalogram captured from three-dimensional cone	43	
	beam computed tomography		
Figure 7	Landmarks identified on the skull with metallic points	46	
Figure 8	Skull positioning in lateral cephalogram machine.		
Figure 9	Traced digital lateral cephalogram of the skull.		
Figure 10	Skull positioning in spiral computed tomography machine		
Figure 11	1 Scout image of the skull derived from spiral computed		
	tomography machine		
Figure 12	Traced Lateral cephalogram of the skull from three	51	
	dimensional spiral computed tomography scans		
Figure 13	Skull in i-Cat cone beam computed tomography machine.	52	
Figure 14	Scout image of the skull derived from cone beam computed	53	
	tomography machine		
Figure 15	Traced Lateral cephalogram of the skull from three-	54	
	dimensional cone beam computed tomography scans.		
Figure 16	Hierarchal representation of group A	57	
Figure 17	Hierarchal representation of group B	58	
Figure 18	Hierarchal representation of group C	59	

Fig. No	Title	Page	
Figure 19	Figure 19 Graphic Representation of the Concordance Correlation		
	Coefficient for linear measurements between digital lateral		
	cephalogram and LC derived from three-dimensional		
	computed tomography. (Group A)		
Figure 20	Graphic Representation of the Concordance Correlation	63	
	Coefficient for angular measurements between digital lateral		
	cephalogram and lateral cephalogram derived from three-		
	dimensional computed tomography (Group A)		
Figure 21	Graphic Representation of the Concordance Correlation	64	
	Coefficient for linear measurements between film based		
	lateral cephalogram and lateral cephalogram derived from		
	three-dimensional computed tomography. (Group A)		
Figure 22	Graphic Representation of the Concordance Correlation	65	
	Coefficient for angular measurements between film based		
	lateral cephalogram and lateral cephalogram derived from		
	three-dimensional computed tomography. (Group A)		
Figure 23	Graphic Representation of the Concordance Correlation	67	
	Coefficient for linear measurements between digital lateral		
	cephalogram and lateral cephalogram derived from three-		
	dimensional cone beam computed tomography. (Group B)		
Figure 24	Graphic Representation of the Concordance Correlation	68	
	Coefficient for angular measurements between digital lateral		
	cephalogram and lateral cephalogram from three-		
	dimensional cone beam computed tomography. (Group B)		
Figure 25	Showing intra observer correlation.	71	
Figure 26	Showing the intra-observer 95% confidence level.	73	
Figure 27	Showing inter-observer correlation.	75	
Figure 28	Showing the inter-observer 95% confidence level.	76	


APPENDIX I

101 CI SCHIV	Patient No
	Surname:
	Forename:
PROPOSED INVESTIGATION The doctor has advised that a CT scan of	(site)

has been requested for me, (name of patient).....

Your doctor has asked for a special x ray examination called a CT scan or computerized tomography. During this test, a thin X ray beam is rotated around the area of the body the doctor wants more information about. The computer collects the data and uses it to make a very detailed 3-D picture which can help the doctors diagnose problems and plan treatment.

The scan itself is painless, but you will have to remain completely still on the examination table while the scan is being done.

RISKS

These are the commoner risks. There may be other unusual risks that have not been listed here. Please ask your radiologist if you have any general or specific concerns.

People are exposed to radiation from natural sources all the time. All x-rays involve a small extra dose of radiation. Dose of radiation used for CT examinations is carefully controlled to ensure the smallest possible amount is used that will still give a useful result. However, all radiation exposure is linked with a slightly higher risk of developing cancer.

The size of any increased risk depends on the age of the patient and the total amount of radiation received. The risk of any one scan is very small indeed, but increases if many scans are needed. The doctor(s) asking for this test will have weighed any risk against the benefit to be gained from the extra information the CT scan should provide.

I understand the procedure has the following specific risks and limitations:

- There is a very small risk associated with radiation exposure. This cannot be avoided.
- As a CT scan is usually avoided if a woman is pregnant, I should tell the staff if this may affect
- If I suffer from claustrophobia, I may find it difficult to remain still within the scanner and should warn the staff beforehand

INDIVIDUAL RISKS

I understand the following are possible significant risks and complications specific to my personal **circumstances**, that I have considered in deciding to have this scan:

.....

APPENDIX II

إقرار بالموافقة على إجراء تصوير مقطعى

الفحص المقترح:

نصحني الطبيب بأن التصوير المقطعي لـ (مكان التصوير) إجراء مرغوب به من أجلي (اسم المريض) .

طلب طبيبك إجراء تصوير شعاعي خاص يدعى التصوير المقطعي، و في أثناء ذلك ستصدر حزمة شعاعية رفيعة تدور حول منطقة الجسم التي أراد الطبيب معرفة معلومات أكثر عنها، و سيقوم الكومبيوتر بجمع البيانات ليستعملها في عمل

صورة ثلاثية الأبعاد شديدة التفاصيل و التي ستساعد الأطباء في تشخيص المشكلة و وضع خطة العلاج .

التصوير بحد ذاته غير مؤلم ، لكنك ستبقى ثابتا على طاولة الفحص خلال إجراء التصوير .

المخاطر:

هذه هي المخاطر الأكثر شيوعاً ، علماً أنه توجد مخاطر أخرى غير اعتيادية لم تذكر هنا ، فمن فضلك اسأل طبيب الأشعة إذا كان لديك أي مشاكل عامة أو نوعية .

- الناس الذين يتعرضون إلى أشعة من مصادر طبيعية طوال الوقت .
 - جميع الأشعة تحتوي على جرعة إضافية ضئيلة من الإشعاع.

- إن جرعة الإشعاع الصادرة عن أجهزة التصوير المقطعي هي مضبوطة بشكل جيد و ذلك من أجل التأكد من أن الأشعة المستعملة هي بأقل كمية ممكنة للحصول على نتائج مفيدة .
 - كل أنواع التعرض للأشعة قد تزيد بشكل قليل جداً احتمال تطور السرطان .

إن حجم أي خطر يعتمد على عمر المريض و كمية الأشعاة الصادرة ، و إن خطر أي جهاز أشعة واحد هو في الواقع قليل جداً لكنه يزيد باستعمال عدة أجهزة .

قام الأطباء الذي طلبوا هذا الفحص بالموازنة بين أي خطر محتمل و بين الفائدة التي يمكن الحصول عليها من المعلومات الإضافية التي يعطيها التصوير المقطعي .

لقد فهمت أن هذا الإجراء له هذه المخاطر التالية:

- هناك خطر بسيط جداً عند التعرض للأشعة ، و لا يمكن تجنبه .
- باعتبار أن التصوير المقطعي يتم تجنبه عادةً عند المرأة الحامل فيجب أن أخبر الأطباء بذلك إذا كان يؤذيني .
- إذا كنت أعاني من رُهاب الأماكن المغلقة (الخوف من الأماكن المغلقة) فقد أجد صعوبة في البقاء ثابتاً داخل الجهاز و يجب إخبار الأطباء بذلك .

المخاطر الفردية:

خاصة بحالتي	مضاعفات	محتملة و	خاطر فردية	التالية هي م	أن الأمور	لقد استوعبت	
	التصوير :	ِ إجراء هذا	ي اتخاذي لقرار	مين الاعتبار فـ	، أن آخذها ب	بة و التي يجب	الشخصي
		•••••			•••••		• • • • • • •
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • •

APPENDIX III

-Computer software (OsiriX)

OsiriX is an image processing software dedicated to DICOM images (".dcm" / ".DCM" extension) produced by imaging equipment (MRI, CT, PET, PET-CT) and confocal microscopy (LSM and BioRAD-PIC format). It can also read many other file formats: TIFF (8,16, 32 bits), JPEG, PDF, AVI, MPEG and Quicktime. It was fully compliant with the DICOM standard for image comunication and image file formats. OsiriX was able to receive images transferred by DICOM communication protocol from any PACS or imaging modality (STORE SCP - Service Class Provider, STORE SCU - Service Class User, and Query/Retrieve).

OsiriX had been specifically designed for navigation and visualization of multimodality and multidimensional images: 2D Viewer, 3D Viewer, 4D Viewer (3D series with temporal dimension, for example: Cardiac-CT and 5D Viewer (3D series with temporal and functional dimensions, for example: Cardiac-PET-CT). The 3D Viewer offers all modern rendering modes: Multi planar reconstruction (MPR), Surface Rendering, Volume Rendering and Maximum Intensity Projection (MIP). All these modes support 4D data and were able to produce image fusion between two different series (for example: PET-CT).

Osirix is at the same time a DICOM PACS workstation for imaging and image processing software for medical research (radiology and nuclear imaging), functional imaging, 3D imaging, confocal microscopy and molecular imaging.

APPENDIX IV

Limits of agreement (LOA)

Measuring the size of differences:

To quantify the size of the differences, we use the Limit of Agreement (LOA). The interpretation is that given one measurement (from observer or method 1) we expect with 95% confidence that the difference from a second measurement (from other observer or method) will be within the LOA. The clinical expertise must judge whether such a difference is acceptably/sufficiently small for two observations to agree. The systematic or average agreement is captured by the mean difference, and the agreement on the individual level is captured by standard deviation.

The LOA approach is suitable for a number of situations:

1-The same observer measures the same quantity twice (with sufficient time inbetween to ensure independent values).

2-Two "interchangeable" observers each independently make measurements of a quantity.

In these situations we expect to have mean difference.

*It is clear that an imprecise method will agree badly with any other method

APPENDIX V

Landmark (Abbreviation)	Definition
Sella (S)	
	Midpoint of rim between anterior
	clinoid process in median plane
Nasion (N)	Midsagittal point at junction of frontal
	and nasal bones at nasofrontal suture
Orbitale (Or)	Most inferior point on infraorbital rim
Anterior nasal spine (ANS)	Most anterior limit of floor of nose, at tip of ANS
Posterior nasal spine (PNS)	Point along palate immediately inferior to
	pterygomaxillary fossa
Pogonion (Pog)	Most anterior point along curvature of the chin
Menton (Me)	Most inferior point along curvature of the chin
Gonion (Go)	Point along angle of mandible, midway between lower
	border of mandible and posterior ascending ramus
Porion (Po)	Most superior point of anatomic external auditory meatus (anatomic Po)
Articular (Ar)	The intersection of the posterior border of the vertical
	mandibular ramus and the outer margin of the cranial base
Point (A)	Is the point of maximum concavity in the midline of the
	alveolar process of the maxilla
Point (B)	Is the point of maximum concavity in the midline of the
	alveolar process of the mandible

APPENDIX VI

Abbreviation	Definition
LC	Lateral cephalogram
2D	Two-dimensional
3D	Three-dimensional
CT	Computed tomography
CBCT	Cone beam computed tomography