Diagnosis of abdominal trauma using MDCT reformations: findings and pitfalls

Essay

Submitted for partial fulfilment of the master degree in radiodiagnosis

By

Dr/Moustafa Mahmoud Nagi

M.B., B.Ch Faculty of medicine Cairo University

Supervised by

Prof.Dr/Haney Ahmed Sami

Professor of radiodiagnosis
Faculty of medicine
Cairo University

Dr/Lamia Adel Salah Eldin

Lecturer of radiodiagnosis Faculty of medicine Cairo University

2009

Acknowledgement

First and foremost thanks are to **GOD** the most beneficent kind and merciful.

I am most grateful to Prof. Dr. Haney Ahmed Sami professor of radiodiagnosis, Cairo University, who kindly supervised and motivated performance of this work with keen interest and indispensable advices.

I would like to express my deepest gratitude to Dr. Lamia Adel lecturer of radiodiagnosis, Cairo University for her valuable scientific supervision and guidance.

I am gratefully honored to express my sincere appreciation to my parents for their great support.

Words will never be able to express my deepest gratitude to all those, who helped me during preparation of this work.

List of contents

	page
Introduction	1
Aim of work	III
List of figures	IV
List of abbreviations	IX
Abstract	Χ
Chapter 1	1
Chapter 2	6
Chapter 3	25
Chapter 4	40
Chapter 5	93
Protocol of initial management of abdominal trauma patient	100
English summary	102
References	104
Arabic summary	

Introduction

The prompt detection and accurate localization of abdominal injuries are difficult. Some diagnostic modalities, including laboratory tests, plain radiography, ultrasound, laparotomy and diagnostic peritoneal lavage (DPL) were used to evaluate patients with blunt abdominal trauma, with various advantages and pitfalls. (1 and 2)

Computed tomography (CT) has taken the lead to be the primary modality used in the emergency evaluation of patients with abdominal trauma in many institutions. (3)

The recent proliferation of multi-detector row computed tomography (MDCT) has led to an increase in the creation and interpretation of images in planes other than the axial images traditionally viewed with CT. Powerful three-dimensional (3D) applications improve the utility of detailed CT data but also create confusion among radiologists, technologists, and referring clinicians when trying to describe a particular method or type of image. (4-6)

Designing examination protocols using MDCT that optimize data quality and radiation dose to the patient requires familiarity with the concepts of beam collimation and section collimation as they apply to MDCT. A basic understanding of the time-limited nature of projection data and the need for thin-section axial reconstruction for 3D applications is necessary to use the available data effectively in clinical practice concerning abdominal trauma.(7-9)

The use of MDCT with its high capabilities using 2D and 3D reformations in evaluation of cases of abdominal trauma has solved many issues which have not previously solved using traditional imaging facilities. Concerning hemoperitoneum, which can be caused by injury of solid organ particularly the liver or the spleen or injury of a vessel- which is uncommon but highly lethal crises that makes exsanguinating hemorrhage is the most important cause of early death ,MDCT has represented signs and findings such as sentinel clot,

active arterial extravasation, and mesenteric fluid with its high sensitivity for detection of even small effusions of blood in the peritoneal cavity that enable the radiologist to locate sources of intraperitoneal hemorrhage and help direct management. (1 and 5)

As regard MDCT pitfalls when it is used in imaging of abdominal trauma patient, For example concerning diaphragmatic injury, Diaphragmatic eventration may mimic diaphragmatic paralysis, and diaphragmatic hernias may mimic diaphragmatic rupture, and vice versa. The exact incidence of false-positive and false-negative findings with CT is unknown, though one would expect that the incidence with multi section CT is lower than that of conventional CT. Another example of pitfalls is concerning bowel and mesenteric injury. Specific reasons of pitfalls include an often chaotic trauma setting that may cause findings to be overlooked or misinterpreted and the presence of other injuries that may distract the observer. Large patients and metallic monitoring or support devices can cause significant artifact which may distract the attention to findings which should not be overlooked. (1, 4 and 5)

Aim of work

The aim of this essay is to clarify the role of MDCT in the diagnosis of abdominal trauma using reformatted reconstructed images and to high lighten the pitfalls in abdominal trauma diagnosis.

List of figures

	Page
Figure 1a: Beam collimation	7
Figure 1b: Beam collimation	7
Figure 2a: Section collimation in MDCT	8
Figure 2b: Section collimation in MDCT	8
Figure 3: Reconstruction of axial images from projection data	9
Figure 4a: Effects of an overlapping reconstruction interval	10
Figure 4b: Effects of an overlapping reconstruction interval	10
Figure 5a: Anisotropic and isotropic data	11
Figure 5b: Anisotropic and isotropic data	11
Figure 5c: Anisotropic and isotropic data	11
Figure 6: Use of a volumetric data set	12
Figure 7a: MPR.Coronal reformatted image	13
Figure 7b: MPR.Sagittal reformatted image	13
Figure 8a: Curved planar reformation	14
Figure 8b: Curved planar reformation	14
Figure 9a: Effects of AIP on an image of the liver	15
Figure 9b: Effects of AIP on an image of the liver	15
Figure 10a: Effects of MIP slab thickness on a coronal image of the abdomen	
Figure 10b: Effects of MIP slab thickness on a coronal image of the abdomen	. 16
Figure 10c: Effects of MIP slab thickness on a coronal image of the abdomen	
Figure 10d: Effects of MIP slab thickness on a coronal image of the abdomen	
Figure 10e: Effects of MIP slab thickness on a coronal image of the abdomen	
Figure 10f: Effects of MIP slab thickness on a coronal image of the abdomen	
Figure 11a: Coronal slab image of the thorax created with Min IP	18
Figure 11b: Coronal slab image of the thorax created with AIP	18
Figure 11c: Coronal slab image of the thorax created with MIP	18
Figure 12a: SSD image of IVC filter	19
Figure 12b: Volume-rendered image of IVC filter	19
Figure 13: 3D volume-rendered image of a duplicated IVC	20
Figure 14: Orthographic volume rendering of the airways	20
Figure 15: Perspective volume rendering of the airways	21
Figure 16a: Region-of-interest editing	22
Figure 16b: Region-of-interest editing	22
Figure 16c: Region-of-interest editing	22
Figure 17a: Use of an opacity threshold for segmentation	23
Figure 17b: Use of an opacity threshold for segmentation	23
Figure 17c: Use of an opacity threshold for segmentation	23
Figure 17d: Use of an opacity threshold for segmentation	24
Figure 17e: Use of an opacity threshold for segmentation	24
Figure 18: Axial image of the abdomen with MDCT using	27
intravenous contrast during arterial phase	27
Figure 19: 3D Coronal image of the abdomen with MDCT	27
using intravenous contrast	27

Figure 20: 3D Coronal image of the abdomen with MDCT	
using intravenous contrast	27
Figure 21: 3D Coronal image of the abdomen with MDCT	
using intravenous contrast	28
Figure 22a: Coronal image of the abdomen with MDCT using	
oral contrast material	28
Figure 22b: CT enteroclysis (coronal image)	28
Figure 22c: CT enteroclysis (axial image)	29
Figure 23: 3D Coronal image of the abdomen with MDCT	
using intravenous contrast	32
Figure 24: 3D Axial image of the abdomen with MDCT	
using intravenous contrast	32
Figure 25: 3D Coronal image of the left kidney with MDCT	
using intravenous contrast	33
Figure 26: 3D volume rendering image of the pelvis	34
Figure 27: Colored 3D volume rendering image of the pelvis	
and iliac vessels	34
Figure 28: 3D volume rendering image of the small and large bowel	35
Figure 29: Colored 3D volume rendering coronal and sagittal	
images of the lumber spine	36
Figure 30: Colored 3D volume rendering CTA image of	
the abdominal aorta and its branches	37
Figure 31: 3D volume rendering coronal image of the	
abdominal aorta and its branches	37
Figure 32: 3D volume rendering image of the superior	
mesenteric artery and its branches	38
Figure 33: Colored 3D CTA of the aorta and its branches	39
Figure 34: Hepatic lacerations	43
Figure 35: Hepatic lacerations	43
Figure 36: Bare area hepatic injury	43
Figure 37a: Hepatic subcapsular hematoma	44
Figure 37b: Hepatic subcapsular hematoma	44
Figure 38: Hepatic parenchymal hematoma	44
Figure 39: Hepatic parenchymal hematoma	45
Figure 40: Hepatic active hemorrhage	45
Figure 41: Hepatic active hemorrhage	45
Figure 42a: Hepatic active hemorrhage	46
Figure 42b: Hepatic active hemorrhage	46
Figure 43a: Hepatic venous injury	47
Figure 43b: Hepatic venous injury	47
Figure 44: Periportal low attenuation	47
Figure 45: Flat IVC	48
Figure 46: Grade I hepatic injury	49
Figure 47: Grade II hepatic injury	49
Figure 48: Grade II hepatic injury	49
Figure 49: Grade III hepatic injury	50
Figure 50: Grade III hepatic injury	50
Figure 51: Grade IV hepatic injury	50
Figure 52: Grade IV hepatic injury	50
Figure 53: Grade V hepatic injury	51

Figure 54: Grade V hepatic injury	51
Figure 55a: Delayed hemorrhage. Initial scan	51
Figure 55b: Delayed hemorrhage .Follow-up scan	52
Figure 56: Hepatic abscess	52
Figure 57a: Subphrenic abscess	52
Figure 57b: Subphrenic abscess	52
Figure 58a: Posttraumatic pseudo aneurysm	53
Figure 58b: Posttraumatic pseudo aneurysm	53
Figure 59: Hemobilia due to posttraumatic pseudo aneurysm	53
Figure 60a: Biloma and pseudo aneurysm	53
Figure 60b: Biloma and pseudo aneurysm	54
Figure 61a: Bile peritonitis	54
Figure 61b: Bile peritonitis	54
Figure 62: Splenic contusion	56
Figure 63: Splenic hematoma and laceration	56
Figure 64a: Splenic active hemorrhage	57
Figure 64b: Splenic active hemorrhage	57
Figure 64c: Splenic active hemorrhage	57
Figure 65: Splenic vascular injury	58
Figure 66: Post traumatic splenic infarction	59
Figure 67: Isolated pancreatic injury	61
Figure 68: Left –sided package injury	61
Figure 69: Right –sided package injury	61
Figure 70: Grade 1 renal injury, contusion	63
Figure 71a: Grade 1 renal injury, subcapsular hematoma	63
Figure 71b: Grade 1 renal injury .penetrating injury.	64
Figure 72: Grade 2 renal injury, subcapsular and perinephric hematomas	64
Figure 73: Grade 2 renal laceration	65
Figure 74: Grade 2 renal laceration. Delayed image	65
Figure 75: Grade 3 renal laceration	65
Figure 76: Grade 4 renal injury. Lacerations extending	
to the collecting system	66
Figure 77: Grade 4 renal injury. Lacerations extending	
to the collecting system	66
Figure 78: Grade 4 renal injury .segmental infarction	66
Figure 79: Grade 5 renal injury. Shattered kidney	67
Figure 80: Grade 5 renal injury. Partial UPJ tear	
and multiple deep lacerations	67
Figure 81: Grade 5 renal injury. Partial UPJ tear	
and multiple deep lacerations	67
Figure 82: Grade 5 renal injury, devascularization	68
Figure 83: Grade 5 renal injury. Shattered kidney	
with renal vein thrombosis	68
Figure 84: Active vascular contrast extravasation	69
Figure 85: Active vascular contrast extravasation	69
Figure 86: Infected hematoma after cortical laceration	70
Figure 87a: Extraperitoneal bladder rupture after motor	
vehicle collision. Axial image	71
Figure 87b: Extraperitoneal bladder rupture after motor	
vehicle collision Coronal image	71

Figure 87c: Extraperitoneal bladder rupture after motor	
vehicle collision .Sagittal image	71
Figure 88a: Axial MDCT cystography image	72
Figure 88b: Coronal MDCT cystography image	72
Figure 88c: Sagittal MDCT cystography image	72
Figure 89: Jejunal perforation	73
Figure 90: Free air and free oral contrast material in the left upper quadrant	74
Figure 91: Intraperitoneal free contrast material	74
and free air due to rupture bladder	74
Figure 92: Free extraluminal air and hematoma of the	7-
right oblique internus muscle	75
Figure 93: Full-thickness cecal and mesenteric tears	75
Figure 94: Splenic laceration with active bleeding	75
Figure 95: Shock bowel	76
Figure 96: Shock bowel	76
Figure 97: Abnormal hyper vascular thickened jejunal loops	70
revealing bowel injury	76
Figure 98: Devascularization and necrosis of a segment of the	70
distal jejunum and ileum	77
Figure 99: Mesenteric hematoma in the left upper quadrant	77
Figure 100a: Coronal MDCT image shows bowel infarct	77
Figure 100b: Axial image of same patient shows mesenteric extravasation	78
Figure 100c: Axial image of same patient shows mesenteric haematoma	78
Figure 101: Tear in the ileocecal mesentery	78
Figure 102: Abrupt termination of the left-sided tributaries	70
of the superior mesenteric vein	79
Figure 103: Hematoma in the splenic flexure mesocolon	79
Figure 104: Sigmoid mesenteric haematoma	80
Figure 105a: Typical flow pattern of hemorrhage from a liver laceration	81
Figure 105b: Typical flow pattern of hemorrhage from a liver laceration	81
Figure 106a: Free intraperitoneal fluid after trauma	82
Figure 106b: Free intraperitoneal fluid after trauma	82
Figure 107a: Sentinel clot sign	83
Figure 107b: Sentinel clot sign	83
Figure 108a: Active arterial extravasation	84
Figure 108b: Active arterial extravasation	84
Figure 109: Mesenteric tear	84
Figure 110: Peritoneal violation	85
Figure 111: Left diaphragmatic tear after blunt trauma.	8'
Figure 112: Left diaphragmatic tear after blunt trauma	8′
Figure 113a: Right diaphragmatic tear.axial view	88
Figure 113b: Left diaphragmatic tear	88
Figure 114: Ruptured left hemidiaphragm	88
Figure 115a: Active extravasation of contrast into the duodenum	90
Figure 115b: Active extravasation of contrast from a branch	,
of the gastroduodenal artery	90
Figure 116: Bilateral upper pole renal contusions	91
Figure 117: Active extravasation of contrast from a jejunal	
branch of superior mesenteric artery	91
1	

Figure 118a: Non enhancing devascularized right kidney	91
Figure 118b: Colored 3D CTA of the same patient	92
Figure 119: Bochdalek hernia with intra thoracic peritoneal fat	95
Figure 120: Acquired diaphragmatic defect in an elderly patient	96
Figure 121: Low attenuated level of extravasated contrast material	97
Figure 122: Hyper attenuated suture material due to previous	
anastomosis surgery	98
Figure 123: Hyper attenuated retained oral contrast material	
within a diverticulum	98
Figure 124: Cone beam artifacts	98
Figure 125: Hyper attenuated foreign body within the bowel lumen	99

List of abbreviations

3D Three dimensional

AAST American association for the surgery of trauma

AIP Average intensity projection

CT Computed tomography

CTA Computed tomographic angiography
CTDI Computed tomography dose index

CTU Computed tomographic urography

DPL Diagnostic peritoneal lavage

FAST Focused assessment with sonography for trauma

GIT Gastro intestinal tract

HRCT High resolution computed tomography

HU Hounsfield unit

ICU Intensive care unit
IVC Inferior vena cava

MDCT Multi-detector computed tomography

Min IP Minimum intensity projection

MIP Maximum intensity projection

MPR Multi planar reformation

PACS Picture archiving and communication system

SSD Shaded surface display
UPJ Uretero- pelvic junction

Abstract

Diagnosis of abdominal trauma using MDCT reformations: findings and pitfalls

MDCT is considered as one of the most important imaging modalities used in diagnosis of abdominal trauma including various abdominal contents which are: abdominal organs, bowel and mesentery, peritoneum, diaphragm and abdominal vasculature. MDCT with its 3D application and multiplanar reformations has a great accuracy and speed in diagnosis of abdominal trauma cases. MDCT examination may face some pitfalls that should be known not to affect the interpretation and consequently the management.

Key words: MDCT - Abdominal trauma - MDCT findings - MDCT pitfalls.

Chapter 1

Overview of Abdominal trauma

Trauma is one of the leading causes of death all over the world .the abdomen is one of the most common sites of the body vulnerable to be injured either due to blunt or penetrating injury. The care of the trauma patient is demanding and requires speed and efficiency. Evaluating patients who have sustained blunt or penetrating abdominal trauma remains one of the most challenging and resource-intensive aspects of acute trauma care. (1)

Missed intra-abdominal injuries and concealed hemorrhage are frequent causes of increased morbidity and mortality, especially in patients who survive the initial phase after an injury. (1)

Physical examination findings are notoriously unreliable for several reasons; a few examples are the presence of distracting injuries, an altered mental state, and drug and alcohol intoxication in the patient. Coordinating trauma resuscitation demands a thorough understanding of the pathophysiology of trauma and shock, excellent clinical and diagnostic acumen, skill with complex procedures, compassion, and the ability to think rationally in critical situations. (2)

A- Blunt abdominal trauma:

It usually results from motor vehicle collisions, assaults, recreational accidents, or falls. The most commonly injured organs are the spleen, liver, retroperitoneum, small bowel, kidneys, bladder, colorectum, diaphragm, and pancreas. Men tend to be affected slightly more often than women. (3)

Pathophysiology

Vehicular trauma is by far the leading cause of blunt abdominal trauma in the civilian population. Auto-to-auto and auto-to-pedestrian collisions have been cited as causes in 50-75% of cases. Rare causes of blunt abdominal injuries include iatrogenic trauma during cardiopulmonary resuscitation and manual thrusts to clear an airway. (1)

Intra-abdominal injuries secondary to blunt force are attributed to collisions between the injured person and the external environment and to acceleration or deceleration forces acting on the person's internal organs. Blunt force injuries to the abdomen can generally be explained by 3 mechanisms. (4)

<u>The first</u> is when rapid deceleration causes differential movement among adjacent structures. As a result, shear forces are created and cause hollow, solid, visceral organs and vascular pedicles to tear, especially at relatively fixed points of attachment. For example, the distal aorta is attached to the

thoracic spine and decelerates much more quickly than the relatively mobile aortic arch. As a result, shear forces in the aorta may cause it to rupture. Similar situations can occur at the renal pedicles and at the cervicothoracic junction of the spinal cord. (1)

<u>The second</u> is when intra-abdominal contents are crushed between the anterior abdominal wall and the vertebral column or posterior thoracic cage. This produces a crushing effect, to which solid viscera (eg, spleen, liver, and kidneys) are especially vulnerable. (3)

<u>The third</u> is external compression forces that result in a sudden and dramatic rise in intra-abdominal pressure and culminate in rupture of a hollow viscus organ. (3)

Imaging Studies

• The most important initial concern in the evaluation of a patient with blunt abdominal trauma is an assessment of hemodynamic stability. In the hemodynamically unstable patient, a rapid evaluation must be made regarding the presence of hemoperitoneum. This can be accomplished using DPL (diagnostic peritoneal lavage) or the FAST (focused assessment with sonography for trauma) scan. Radiographic studies of the abdomen are indicated in stable patients when the physical examination findings are inconclusive. (2)

A-Plain radiography

Although the overall value of plain films in the evaluation of patients with blunt abdominal trauma is limited, they can demonstrate numerous findings. The chest radiography may aid in the diagnosis of abdominal injuries such as ruptured hemidiaphragm (eg, a nasogastric tube seen in the chest) or pneumoperitoneum. The pelvic or chest radiography can demonstrate fractures of the thoracolumbar spine. The presence of transverse fractures of the vertebral bodies, ie, Chance fractures, suggests a higher likelihood of blunt injuries to the bowel. In addition, free intraperitoneal air, or trapped retroperitoneal air from duodenal perforation, may be seen. (4)

B-FAST examination

The use of diagnostic ultrasonography to evaluate a patient with blunt trauma for abdominal injuries has been advocated since the 1970s.Bedside ultrasonography is a rapid, portable, noninvasive, and accurate examination that can be performed by emergency clinicians and trauma surgeons to detect hemoperitoneum. In fact, in many medical centers, the FAST examination has virtually replaced DPL as the procedure of choice in the evaluation of hemodynamically unstable trauma patients. (1)