ROLE OF MULTISLICE COMPUTED TOMOGRAPHY IN PATIENTS PRESENTING WITH HEMOPTYSIS

A Thesis
Submitted for Partial Fulfillment of MD Degree
of Radiodiagnosis

Presented By AMR MOHAMED ISMAEEL SAADAWY

M.sc. Radiodiagnosis Faculty of medicine – Ain Shams University

Under supervised of

PROF. DR. /MAHA FATHY AZMY

Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

PROF. DR. / MAGDY MOHAMED KHALIL

Professor of chest diseases Faculty of Medicine, Ain Shams University

DR. / MOHAMED AMIN NASSEF

Assistant professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2012

Acknowledgment

First and foremost thanks Allah, to whom I relate any success in achieving any work in my life.

I would like to express my deepest gratitude and profound respect to **Prof. Dr. Maha Fathy Azmy**, Professor of Radiodiagnosis, Ain Shams University, for her endless patience and guidance. This work could not have reached its goal without her support.

I wish to express my thanks to **Prof. Dr. Magdy Khalil**, Professor of Pulmonology, Ain Shams University, for his help and encouragement.

My profound thanks and appreciation to Prof. **Dr.**Mohammed Amin Nassef, Assistant Professor of Radiology,

Ain Shams University, for his help and encouragement.

Finally, I would like to express my deepest thanks and gratitude to all of my professors, colleagues in Radiodiagnosis Department, and family members who stood beside me throughout this work giving me their support, sympathy and guidance.

Contents

Page
• Introduction 1
• Aim of the Work 4
• Review of Literature5
• Patient and Methods 116
• Results
• Discussion 140
• Illustrative Cases 152
• Summary and Conclusion 179
• References
• Arabic Summary

List of Abbreviations

List Of Albreviations

ABPA Allergic broncho-Pulmonary Aspergillosis

ACS American Cancer Society

BA Bronchial Artery

BAE Bronchial Artery Embolization

CB Central Bronchiectasis

CT Computed Tomography

C-TYPE Central Type

BI Bronchus Intermedius

Cm Centimeter

3D 3 Dimensional

DA Descending Aorta

GE General Electric

HAM High Attenuation Mucus

HU Hounsfield Unit

HRCT High Resolution Computed Tomography

FOB Fiberoptic Bronchoscopy

ICBT Intercostobronchial trunk

IPA Interlobar pulmonary artery

IV Intravenous

MIP Maximum Intensity Projection

MinIP Minimum Intensity Projection

Min Minute

ml Milliliter

List of Abbreviations

mm	Millimeter
MPA	Main Pulmonary Artery
MPR	Multiplanar Reformation
MSCT	Multislice Computed Tomography
MDCT	Multidetector Computed Tomography
NBSA	Non Bronchial Systemic Artery
NSCLC	Non-Small Cell Lung Carcinoma
PAVM	Pulmonary Arteriovenous Malformation
P-TYPE	Peripheral Type
Sec	Second
SCC	Squamous Cell Carcinoma
SCLC	Small Cell Lung Carcinoma
S	Superior Vena Cava
SCA	Subclavian Artery
SSD	Shaded Surface Display
ТВ	Tuberculosis
RPA	Right pulmonary artery
VB	Virtual bronchoscopy
VOI	Volume Of Interest
VR	Volume Rendering
VRT	Volume Rendering Technique
WHO	World Health Organization

List of Figures

List of Figures

Figure no.	Title	Page
Figure (1)	The bronchial tree	6
Figure (2)	Gross anatomy of lung lobes	8
Figure (3)	Bronchopulmonary segments	10
Figure (4)	Diagrammatic Secondary pulmonary lobule	11
Figure (5)	Pulmonary Arteries and veins	14
Figure (6)	Pulmonary Arteries	15
Figure (7)	Four main types of bronchial artery	19
Figure (8)	Right intercostobronchial trunk	20
Figure (9)	CT of the normal lung (coronal reconstruction)	25
Figure (10)	Spatial orientation of the bronchial structures	26
Figure (11)	Level of Stereo-clavicular junction	27
Figure (12)	Crossing left brachio-cephalic vein	28
Figure (13)	Level of aortic arch	29
Figure (14)	Aortopulmonary window	30
Figure (15)	Left pulmonary artery	31
Figure (16)	Main &right pulmonary arteries	32
Figure (17)	Left atrium	33
Figure (18)	Cardiac ventricles	34
Figure (19)	Retrocrural space	36
Figure (20)	Normal anatomy of bronchial arteries on MDCT	37

List of Figures

Figure (21)	Multidetector CT evaluation of bronchial arteries.	37
Figure (22)	Normal pulmonary arteries.	38
Figure (23)	Normal pulmonary veins.	38
Figure (24)	A Rasmussen's aneurysm	60
Figure (25)	First generation CT scanners	63
Figure (26)	Second generation CT scanners	63
Figure (27)	Third generation CT scanners	64
Figure (28)	Fourth generation CT scanners	64
Figure (29)	Spiral CT principle	65
Figure (30)	Oblique view of a CT gantry with an X-ray fan and detectors for a single section scanners	67
Figure (31)	Basic principles of maximum intensity projection (MIP)	70
Figure (32)	30 years old man with hemoptysis	85
Figure (33)	chest CT shows a primary mass with satellite nodules in the right lower lobe	86
Figure (34)	Chest CT scan shows a mass in the right lung	87
Figure (35)	Nodule calcifications patterns	88
Figure (36)	Asymptomatic 35 years old with tuberculosis.	91
Figure (37)	Axial CT of the lung showing bilateral nodular infilterates.	92
Figure (38)	High resoluition CT image show an air cresent sign.	94
Figure (39)	CT scan shows welldefined 1.5 cm nodule with peripheral air cresent in left lobe.	95

List of Figures

Figure (40)	Bronchiectasis	97
Figure (41)	Normal anatomy of bronchial arteries on MDCT	100
Figure (42)	Contrast enhanced CT scan shows a pathological left bronchial artery.	101
Figure (43)	Axial 1-mm thick ct scan obtained just below the aortic arch	103
Figure (44)	Postero anterior chest radiographic demonstrates a cavitating mass in the right upper lobe	104
Figure (45)	Anomalous bronchial artery anatomy in patient with acute hemoptysis	105
Figure (46)	MDCT evaluation of NBSA	108
Figure (47)	NBSA from left intercostal artery	109
Figure (48)	64 year old man with massive hemoptysis	112
Figure (49)	Case 1	153-154
Figure (50)	Case 2	155-156
Figure (51)	Case 3	157-158
Figure (52)	Case 4	159
Figure (53)	Case 5	161-162
Figure (54)	Case 6	163-164
Figure (55)	Case 7	165-166
Figure (56)	Case 8	167-168
Figure (57)	Case 9	169-170
Figure (58)	Case 10	171-173
Figure (59)	Case 11	174-175
Figure (60)	Case 12	176-177

List of Tables

list of Tables

Table no.	Title	Page
Table (1)	Bronchopulmonary Segments	9
Table (2)	general considerations for CT & CTA	119
Table (3)	Parameters of Multi-Detector row CT	122
Table (4)	Technique for image reconstruction or reformation	122
Table (5)	Shows the chest CT findings in the group I	128
Table (6)	Shows the chest CT findings of the site of bleeding in the group I	129
Table (7)	Showed the classification of patients presenting in group II	131
Table (8)	Shows CT angiography findings as regard the cause of bleeding in group II	132
Table (9)	Summarize the CT findings & detection of the cause of hemoptysis in the two groups.	133
Table (10)	Shows the chest CT findings of the site of bleeding in the group II	134

List of Tables

Table (11)	Summarize the CT findings & detection of the site of bleeding in the two groups.	135
Table (12)	Showed the source of bleeding detected in group II	137
Table (13)	Shows the origin and diameter of the bronchial arteries detected by CT study	138
Table (14)	Shows the origin of the bronchial arteries in relation to the aorta and tracheal carina	139

Introduction

Hemoptysis is coughing up blood originating from the lower respiratory tract (*Anderson*, 2006).

It refers to a wide clinical spectrum, ranging from a nonalarming bloody expectoration to a life-threatening condition associated with an immediate risk of airway obstruction and death (*Savale et al.*, 2007).

Although hemoptysis may cease temporarily, a possible life-threatening condition may still be present, requiring complete evaluation and treatment (*Anderson*, 2006).

The challenge for the physician caring for patients with hemoptysis is not only to assess the severity but also to identify the underlying cause and site of bleeding, which may influence both management and outcome (*Savale et al.*, 2007).

There are multiple causes of hemoptysis, from airway diseases, parenchymal diseases, cardiovascular diseases, and other causes (*Anderson*, 2006).

The cause of hemoptysis cannot be determined in 20-30% of cases (*Anderson*, 2006). That is why hemoptysis warrants a comprehensive evaluation of the lung parenchyma, airways, and thoracic vasculature (*Bruzzi et al.*, 2006).

The bronchial arteries are the source of bleeding in most cases of hemoptysis; while hemoptysis is related to pulmonary artery injury in up to 11% of cases (*Khalil et al., 2007*). Contributions from the non-bronchial systemic arterial system represent an important cause of recurrent hemoptysis following apparently successful bronchial artery embolization. Vascular anomalies such as pulmonary arteriovenous malformations and bronchial artery aneurysms are other important causes of hemoptysis. (*Bruzzi et al., 2006*)

The diagnosis of hemoptysis is usually based on the combination of physical examination; chest X-ray, fiberoptic bronchoscopy, and computed tomography (CT) scan (*Savale et al.*, 2007).

Conditions such as bronchiectasis, chronic bronchitis, lung malignancy, tuberculosis, and chronic fungal infection are some of the most common underlying causes of hemoptysis and are easily detected with conventional CT (*Bruzzi et al.*, 2006).

Multi-detector row CT (MDCT) permits a more sensitive, more rapid and accurate assessment of the cause and consequences of hemorrhage into the airways and helps guide subsequent management (*Bruzzi et al.*, 2006).

CT is superior to fiberoptic bronchoscopy in finding a cause of hemoptysis, its main advantage being its ability to show distal airways beyond the reach of the bronchoscope, and

the lung parenchyma surrounding these distal airways (Sirajuddin & Mohammed, 2008).

Data suggest that CT could replace bronchoscopy as the first-line procedure for screening patients with large and those with massive hemoptysis (*Revel et al.*, 2002).

The addition of MDCT angiography provides a more precise depiction of the bronchial arteries than conventional angiography (*Khalil et al.*, 2007). MDCT angiography is the optimal CT study for evaluating hemoptysis. In addition to showing the lung parenchyma and airways, it allows one to evaluate the integrity of pulmonary, bronchial, and nonbronchial systemic arteries within the chest (*Sirajuddin & Mohammed*, 2008).

Multidetector CT angiography is recommended before bronchial artery embolization to help one plan the procedure and shorten the procedure time (*Sirajuddin & Mohammed*, 2008).

The combined use of thin-section axial scans and more complex reformatted images provides the interventional radiologist with better information about the bleeding side, the underlying disease, and the vascular origin of the bleeding causing hemoptysis (bronchial artery, nonbronchial systemic artery, pulmonary artery, or a combination of these arteries) (Bruzzi et al., 2006 & Khalil et al., 2007)

Aim of the Work

The aim of the current study is to describe the role of MDCT with its new applications such as reformatted images, high resolution imaging, and post-processing techniques, for determining the cause and site of bleeding, and to determine the additional benefit of MDCT angiographic technique (in selected patients) in identifying the site of bleeding and its vascular origin.

Gross Anatomy of the Lungs

Tracheo-bronchial tree (Fig. 1):

Trachea:

The trachea is about 10-11cm long, descends from the larynx, extending from the level of the sixth cervical to the upper border of the fifth thoracic vertebra, where it divides into right and left principal bronchi (*Standring et al.*, 2005).

Right principal bronchus

The right principal bronchus is wider, shorter and more vertical than the left, being 2.5cm long. It gives rise to its first branch "the superior lobar bronchus ", and then crosses the posterior aspect of the pulmonary artery to enter the right lung hilum at 5th thoracic vertebra, where it divides into a middle and inferior lobar bronchus (*Drake et al.*, 2007).

Left principal bronchus

The left principal bronchus which is narrower and less vertical than the right is nearly 5cm long and enters the hilum of the left lung at the level of 6th thoracic vertebra. Passing left inferior to the aortic arch, it crosses anterior to the esophagus, thoracic duct and descending thoracic aorta. The left pulmonary artery is anterior then superior to it. As it enters the hilum it