Effect of Adrenomedullin on Insulin Resistance in Type 2 Diabetic Rats

Thesis

Submitted in partial fulfillment for the degree of master in Physiology (Basic Medical Sciences)

By
Amy Fakhry Boshra
(M.B; B.CH.M.sc.)

Under supervision of

Prof. Dr
Hoda Youssef Henein
Professor of Physiology
Faculty of Medicine
Cairo University

Assist. Prof. Dr
Laila Ahmed Rashed
Assistant Prof. of Biochemistry
Faculty of Medicine
Cairo University

Assist. Prof. Dr
Sandra Mourad Younan
Assistant Prof. of Physiology
Faculty of Medicine
Cairo University

ABSTRACT

Non-insulin-dependent diabetes mellitus is one of the common metabolic disorders that ultimately afflict the majority of individuals. Adrenomedullin (AM) is a potent vasodilating peptide originally isolated from human pheochromocytoma and it was found latter to be produced by many tissues. Previous studies reported development of insulin resistance in aged Am deficient mice. In this study, a single tail vein gene delivery approach was employed to explore its potential role in insulin resistance. Upregulating AM gene in type 2 diabetic rats (high fat diet+ streptozotocin injection) significantly improved skeletal muscle glucose uptake, serum glucose, insulin, cholesterol and triglycerides as well as the insulin resistance index (HOMA-IR) compared with diabetic rats not receiving AM gene. The beneficial effects of AM gene delivery were accompanied by increased muscle GLUT-4 gene expression, indicating that AM is closely related to skeletal muscle insulin responsiveness. These findings provide new insights into the role of AM in insulin resistance and may have significance in therapeutic applications in type 2 diabetes.

KEY WORDS:

Adrenomedullin -Insulin resistance -Type 2 diabetes.

Acknowledgement

First and above all, I deeply thank God who helped and guided me throughout my life with his love and mercy.

I would like to express my great appreciation and gratefulness to my dear supervisor, **Professor Dr. Hoda Youssef Henein**, Professor of physiology, Faculty of Medicine, Cairo University. I am really thankful for her kind and meticulous supervision, supportive care and valuable guidance all the way.

Special thanks and appreciation are extended to **Dr.Laila Ahmed Rashed**, Ass. Professor of Biochemistry, Faculty of Medicine, Cairo University for her expert guidance and great help she offered me throughout my work.

No words can express my great gratitude and special appreciation to **Dr. Sandra Mourad Younan**, Ass. Professor of physiology, Faculty of Medicine, Cairo University for her patient and meticulous supervision, remarkable suggestions and valuable time she offered me.

Amy Fakhry Boushra

pedicated 70

My beloved parents

My brother

My friends

For their support and patience

LIST OF CONTENTS

	Pages
 Introduction and Aim of the work 	1
• Review of literature	2
Chapter I: Adrenomedullin	
 Structure and Synthesis of Adrenomedullin 	2
 Origins of Circulating Adrenomedullin 	5
 Circulating Adrenomedullin Assays 	7
 Adrenomedullin in Other Biological Fluids 	8
 Regulation of Adrenomedullin Gene Expression and Peptide Synthesis in Vivo 	9
 Experimental Regulation of Adrenomedullin Gene 	
Expression and Peptide Synthesis in Vitro	11
 Adrenomedullin Receptors and Signal Transduction 	13
 Biological Actions of Adrenomedullin 	21
Chapter II: Insulin Signal Transduction at	
Cellular Level	35
Chapter III: Type 2 Diabetes Mellitus	43
 Pathophysiology of Type 2 Diabetes 	46
 Complications of Type 2 Diabetes 	52
 Treatment of type 2 Diabetes: New Trend in 	
Glucose Homeostasis	55
 Materials and Methods 	60
• Results	87
• Discussion	121
• English summary	131
• References	134
	134
 Arabic summary 	

List of Tables

Table No.	Title	Page
Table 1	Serum glucose, Serum insulin and insulin resistance index (HOMA-IR) in the control group (group 1).	88
Table 2	Serum triglycerides and serum cholesterol in the control group (group 1).	89
Table 3	Muscle glucose uptake, muscle GLUT4 and adrenomedullin gene expression in the control group (group 1).	90
Table 4	Serum glucose, serum insulin and insulin resistance index (HOMA-IR) in the diabetic group (group 2).	92
Table 5	Serum triglycerides and serum cholesterol in the diabetic group (group 2).	93
Table 6	ible Muscle glucose uptake, muscle GLUT4 and 94	
Table 7	Serum glucose, serum insulin and insulin resistance index (HOMA-IR) in the non diabetic group + adrenomedullin gene (group 3).	96
Table 8	Serum triglycerides and serum cholesterol in the non diabetic group + AM gene (group 3).	97
Table 9	Muscle glucose uptake, muscle GLUT4 and adrenomedullin gene expression in the non diabetic group + AM gene (group 3).	98
Table 10	Serum glucose, serum insulin and insulin resistance index (HOMA-IR) in the diabetic group + AM gene (group 4).	100
Table 11	Serum triglycerides and serum cholesterol in the Diabetic group+ AM gene (group 4).	101
Table 12	Muscle glucose uptake, muscle GLUT4 and adrenomedullin gene expression in the Diabetic + AM gene group (group 4).	102
Table 13	Comparative table between the measured parameters in the control group (group 1) and the diabetic group (group 2).	104
Table 14	Comparative table between the measured parameters in the non diabetic + AM gene group (group 3) and the diabetic+ AM gene group (group 4).	106

Table	Comparative table between the measured	108
15	parameters in the control group (group 1) and the	
	non diabetic + AM gene group (group 3).	
Table	Comparative table between the measured	110
16	parameters in the diabetic group (group 2) and the	
	diabetic+ AM gene group (group 4).	
Table	Table 17: Cumulative table showing the mean ±	111
17	standard deviation of the measured parameters in	
	the four studied groups.	

List of Figures

Figures of Review of Literature

Figure NO.	Title	Page
Fig. A	Amino-acid sequence of human AM	3
Fig. B	The CGRP/adrenomedullin (AM) receptor model	20
Fig. C	The cellular mechanisms of vasodilatation to AM	20
Fig. D	Insulin Receptor	37
Fig. E	Signaling pathways involved in GLUT4 translocation	37

Figures of Results

Figure	Title pa	
NO.	Comparison of many values of sorum alvesse in the 1	
Fig. 1 Comparison of mean values of serum glucose in		112
	four studied groups	110
Fig. 2	Comparison of mean values of serum insulin in the	113
	four studied groups	
Fig. 3	Comparison of mean values of HOMA-IR in the	114
	four studied groups	
Fig. 4	Comparison of mean values of serum triglycerides	115
	in the four studied groups	
Fig. 5	Comparison of mean values of serum cholesterol in	116
	the four studied groups	
Fig. 6	Comparison of mean values of muscle glucose	117
8	uptake in the four studied groups	
Fig. 7	Comparison of mean values of muscle GLUT-4	118
8 ··	gene expression in the four studied groups	
Fig. 8	Comparison of mean values of muscle	119
119.0	adrenomedullin gene expression in the four studied	
	groups	
Fig. 9	An agarose gel electrophoresis show PCR products	120
rig. y	of GLUT-4 gene.	120
	of OLO 1-4 gene.	
Fig. 10	An agarage gal electronharagis show DCD and dusts	120
Fig. 10	An agarose gel electrophoresis show PCR products	120
	of adrenomeduline gene.	

LIST OF ABBREVIATIONS

ADA	American Diabetic Association
ADP	Adenosine diphosphate
AM	Adrenomedullin
AM2	Intermedin
AM ₁ receptor	Adrenomedullin receptor type 1
AM ₂ receptor	Adrenomedullin receptor type 2
AMBP-1	Adrenomedullin binding protein-1
ANOVA	Analysis of variance
aP2	Adipocyte P2 gene
AP-2	Activator protein- 2
AT_1	Angiotensin II receptor type 1
ATP	Adenosine triphosphate
bp	Base pair
cAMP	Cyclic adenosine monophosphate
cDNA	Complementary deoxy-ribonucleic acid
CECs	Cerebral endothelial cells
cGMP	Cyclic guanosine monophosphate
CGRP	Calcitonin gene-related peptide
COOH-terminal	Carboxy-terminus
CRLR (CLR)	Calcitonin receptor-like receptor
CSF	Cerebrospinal fluid
CT	Calcitonin
dATP	Deoxy adenosine triphosphate
dCTP	Deoxy cytidine triphosphate
DEPC	Diethyl pyrocarbonate
dGTP	Deoxy guanosine triphosphate
DM	Diabetes mellitus
DNA	Deoxy-ribonucleic acid
DNase 1	Deoxy-ribonuclease 1
dNTPs	Deoxynucleotide triphosphates
DOPE	lipdioleoyl phosphatidylethanolamine
DOSPA	2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate

dTTP	Deoxy thymidine triphosphate
EB	Ethidium Bromide
EDHF	
	Endothelium-derived hyperpolarizing factor
EDTA	Ethylene diamine tetraacidic acid
ELISA	Enzyme linked immuno sorbant assay
eNOS	Endothelial nitric oxide synthase
ENPP1	Ectonucleotide pyrophosphatase/phosphodiesterase
FFAs	Free fatty acids
FSH	Follicular stimulating hormone
Gab-1	Growth factor receptor binding protein-2 associated binder-1
GABA	Gamma amino butyric acid
GIP	Glucose-dependent insulinotropic polypeptide
GLP-1	Glucagon like peptide-1
GLUT-4	Glucose transporter-4
G-protiens	Guanosine triphosphate (guanosine nucleotide)-
	binding proteins
GPCRs	G- protein coupled receptors
Grb-2	Growth factor receptor binding protein-2
Gs	s type of G-proteins
GSK3	Glycogen synthase kinase-3
GTC	Guanidine thiocyanate
GTPases	Guanosine triphosphatases
HbA1c	Glycosylated hemoglobin
HDL	High density lipoprotein
HFD	High fat diet
HIF-1	Hypoxia-inducible factor 1
HOMA-1R	Homeostasis model assessment of insulin resistance
HPRI	Human placental ribonuclease inhibitor
iAM	Intermediate inactive form of adrenomedullin
¹²⁵ I-AM	Radioactive iodine labeled adrenomedullin
¹²⁵ I-CGRP	Radioactive iodine labeled calcitonin gene related
	peptide
I _{Ca-L}	L-type calcium current (long lasting Ca ²⁺ channels)
IgA	Immunoglobulin A
IGF-I	Insulin-like growth factor-I
L	

IL-1ß	Interleukin-1 Beta
IL-6	Interleukin-6
iNOS	Inducible nitric oxide synthase
IR	Insulin receptor
IRS (1-4)	Insulin receptor substrates
K _{ATP}	Adenosine triphosphate-sensitive potassium channels
K _{Ca}	Calcium-activated potassium channels
KDa	Kilo dalton amino acid
KR-IGF-IR	Dominant-negative insulin-like growth factor-I receptor
LADA	Latent autoimmune diabetes of the adult
LDL	low density lipoproteins
LPS	Lipopolysaccharide
LV	Left ventricle
mAM	Mature adrenomedullin
MAPK	Mitogen activated protein kinase
MMLV	Moloney murine leukemia virus
MODY	Maturity onset diabetes of the young
mRNA	Messenger ribonucleic acid
MR-proAM	Midregional proadrenomedullin
NAD	Nicotinamide adenine dinucleotide
NADH	Reduced nicotinamide adenine dinucleotide
NADP	Nicotinamide adenine dinucleotide phosphate
NADPH	Reduced nicotinamide adenine dinucleotide phosphate
NF-κB	Nuclear factor-kappa B
NGF	Nerve growth factor
NH2-terminus	Amino-terminus
NO	Nitric oxide
OD	Optical density
P	Probability
PAI-1	Plasminogen activator inhibitor -1
PAMP	Proadrenomedullin N-terminal peptide
PASMCs	Pulmonary artery smooth muscle cells

PC-1	Plasma cell differentiation factor-1
PCR	Polymerase chain reaction
PDGF	Platelet-derived growth factor
PDK 1	Phosphoinositide-dependent kinase 1
PEPCK	Phosphoenolpyruvate carboxykinase
рH	Power of hydrogen
PH	Pleckstrin homology
РІЗ-К	Phosphatidylinositol 3-kinase
PIP3	Phosphatidylinositol 3, 4, 5- phosphate
PKA	Protein kinase A
PKB/cAkt	Protein kinase B, Akt (protein serine/Threonine
	kinase)
PKC $(\alpha, \beta 2, \lambda, \zeta,$	Protein kinase C (alpha, beta2, lambda, zeta,
$\theta, \varepsilon, \delta$	theta, epsilon, delta)
pM	Picomole 1:6 4 1 1 4 (1.1)
PPAR(α , δ, and) γ	Peroxisome proliferator-activated receptor (alpha, delta, gamma)
PreproAM	Preproadrenomedullin (adrenomedullin precursor)
ProAM	Proadrenomedullin
PTP	Protein tyrosine phosphatase
Rad	Ras associated with diabetes
RAECs	Rabbit aortic endothelial cells
RAMPs (1-3)	Receptor activity modifying proteins
RCP	Receptor component protein
RNase	Ribonuclease
ROS	Reactive oxygen species
rpm	revolutions per minute
RT	Reverse transcriptase
SD	Standard deviation
SE	Standard error
STZ	Streptozotocin
TAE	Tris-Acetate EDTA buffer
Taq	Thermus aquaticus
TNF-α	Tumor necrosis factor- alpha
TrkA	Tropomyosin-related kinase A receptors

TZDs	Thiazolidinediones
UCP-2	Uncoupling protein 2
UV	Ultraviolet
VSMCs	Vascular smooth muscle cells
ZG	Zona glomerulosa

Introduction and Aim of the work

Adrenomedullin (AM) is a potent 52-amino acid vasodilator peptide originally isolated from tissue extracts of human pheochromocytoma (*Kitamura et al, 1993 (A)*). Moreover it has been detected in a variety of organs, such as adrenal gland, kidney, heart, lung, spleen, and brain, as well as in endothelial and vascular smooth muscle cells (*Dobrzynski et al, 2000*).

Adrenomedullin is involved in a variety of biological activities, including vasodilation, diuresis, and inhibition of aldosterone secretion. Plasma AM levels are increased in patients with cardiac hypertrophy, heart failure, renal dysfunction, and hyperglycemia acting in an autocrine/paracrine and endocrine fashion (*Dobrzynski et al, 2002*).

Hypertension and insulin resistance, are common related disorders that are often associated with increased oxidative stress and the resultant vascular damage. AM was commonly identified as vasorelaxant and hypotensive in cardiovascular diseases (*Brain and Grant, 2004*), however some studies investigated its role in insulin resistance (*Shimosawa et al, 2003*).

Adrenomedullin-deficient mice not only showed increased production of muscular reactive oxygen species, but also had significantly decreased insulinstimulated glucose uptake into the soleus muscle associated with impairment of insulin signals. In turn, these abnormalities could be nearly reversed by either treatment with a membrane-permeable superoxide dismutase mimetic, or adrenomedullin supplementation (*Finkel and Holbrook, 2000 and Shimosawa et al, 2003*).

The aim of the present study is to investigate the effect of upregulation of adrenomedullin gene expression on insulin resistance in type 2 diabetes.

Adrenomedullin

Structure and Synthesis of Adrenomedullin

Adrenomedullin (AM) was isolated originally by *Kitamura et al*, 1993 (A) from a human pheochromocytoma. The characterization of purified human AM showed that it is a 52-amino acid peptide with a single disulfide bridge and an amidated tyrosine at the carboxy terminus. It shows some homology with calcitonin gene-related peptide (CGRP) and has therefore been added to the calcitonin/CGRP/amylin peptide family. Rat adrenomedullin has 50 amino acids, with 2 amino acid deletions and 6 amino acid substitutions compared with the human AM (*Sakata et al*, 1993).

Adrenomedullin is synthesized as part of a larger precursor molecule, termed preproadrenomedullin. In both rat and human this precursor consists of 185 amino acids (Kitamura et al, 1993 (B) and Sakata et al, 1993). The adrenomedullin precursor gives rise to several biologically active cleavage These are: proadrenomedullin N-terminal peptides (PAMP) products. including proadrenomedullin N-terminal peptide of 20 amino acids {PAMP (1-20)} and proadrenomedullin N-terminal peptide of 12 amino acids (153-185), $\{PAMP(9-20)\},\$ Adenotensin {proAM and prodepin {proAM (22-41)} appears to be a rat-specific adrenomedullin cleavage product (Kitamura et al, 1993 (B), Lippton et al, 1994 (B) and Gumusel et al, 1995). AM2 (intermedin) is a 47-amino-acid novel member of the calcitonin/CGRP family peptides discovered simultaneously by two groups (Roh et al, 2004 and Chang et al, 2004).

The gene encoding preproadrenomedullin is termed the adrenomedullin gene and has been mapped and localized to a single locus of chromosome 11.