

Department of Anesthesiology, Intensive care and Pain Management

PERIOPERATIVE ANESTHETIC PREVENTION OF NEUROLOGICAL INSULTS DURING PEDIATRIC CARDIAC SURGERIES

Essay

Submitted for the partial fulfillment of master degree in Anesthiology

By

MAMDOUH FARAG ABO EL-HAMD

M.B., B.Ch.

Under supervision of

PROF. DR. NAHED EFFAT YOUSEF SALAMA

Professor of Anesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine, Ain Shams University

DR. AYMAN AHMED ABD EL-LATIF

Assistant Professor of Anesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine, Ain Shams University

DR. JOHN NADER NASEEF

Lecturer of Anesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine, Ain Shams University

2013

الوقاية التخديرية من الإصابات العصبية خلال فترة ما حول جراحة القلب للأطفال

رسالة توطئة للحصول على درجة الماجستير في التخدير

مقدمة من

ممدوح فرج أبو الحمد

بكالوريوس الطب والجراحة العامة- جامعة عين شمس

تحت إشراف

الأستاذ الدكتور/ نامد عنبت يوسن سلامه

أستاذ التخدير والرعاية المركزة وعلاج الألم كلية الطب- جامعة عين شمس

الدكتور/ أيمن أحمد عبد اللطيهم

أستاذ مساعد التخدير والرعاية المركزة وعلاج الألم كلية الطب- جامعة عين شمس

الدكتور/ جون نادر نحيف

مدر س التخدير والرعاية المركزة وعلاج الألم كلية الطب- جامعة عين شمس

2013

Acknowledgment

First & foremost, I would like to express my greatest appreciation and thankfulness to ALLAH The Most Merciful, who created me and gave me ability to think, believe and worship.

I would like to express my deepest gratitude and special thanks to Prof. Dr. Nahed Effat Yousef Salama, Professor of Anesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine, Ain Shams University, for her guidance and sincere help during the supervision of this study.

I am greatly indebted to **Dr. Ayman Ahmed Abd El-Latif**, Assistant Professor of Anesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine, Ain Shams University, for his continued advice and his kind scientific supervision. His remarks were quite, valuable and of great help in the completion of this study.

I would like to direct my special thanks to **Dr. John Nader Naseef**, Lecturer of Anesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine, Ain Shams University, for his invaluable help, fruitful advice, continuous support offered to me and guidance step by step till this essay was finished.

Finally, I would like to thank my great mother and awesome wife and everybody who shared in any way in the performance of this essay.

Acknowledgment

First & foremost, I would like to express my greatest appreciation and thankfulness to ALLAH The Most Merciful, who created me and gave me ability to think, believe and worship.

I would like to express my deepest gratitude and special thanks to Prof. Dr. Nahed Effat Yousef Salama, Professor of Anesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine, Ain Shams University, for her guidance and sincere help during the supervision of this study.

I am greatly indebted to **Dr. Ayman Ahmed Abd El-Latif**, Assistant Professor of Anesthesiology,
Intensive Care Medicine & Pain Management Faculty
of Medicine, Ain Shams University, for his continued
advice and his kind scientific supervision. His remarks
were quite, valuable and of great help in the
completion of this study.

I would like to direct my special thanks to **Dr. John**Nader Naseef, Lecturer of Anesthesiology, Intensive
Care Medicine & Pain Management Faculty of
Medicine, Ain Shams University, for his invaluable
help, fruitful advice, continuous support offered to me
and guidance step by step till this essay was finished.
Finally, I would like to thank my great mother and
awesome wife and everybody who shared in any way in
the performance of this essay.

Index

List of Abbreviations	I
List of Tables	III
List Of Figures	IV
Introduction	1
Mechanisms of Neurological Insults In Pediatrics With Heart Disease During Cardiac Surgery	4
Perioperative Prevention of Neurological Insults	22
Cerebral Functions Monitoring During Surgery	57
Referances	75
English Summary	93
Arabic Summary	

List of Abbreviations

A CID	A . 1 C 1 1D C .
ACP	Antegrade Cerebral Perfusion
BDNF	Brain Derived Neurotrophic Factor
BIS	Bispectral Index Monitor
BP	Blood Pressure
CaO2	Arterial Oxygen Content
CBF	Cerebral Blood Flow
CBFV	Cerebral Blood Flow Velocity
CHD	Congenital Heart Disease
CK-BB	Creatine Kinase Brain Band
$CMRO_2$	Cerebral O ₂ Metabolic Rate
CNS	Central Nervous System
CO	Cardiac Output
CO_2	Carbon Dioxide
СРВ	Cardiopulmonary Bypass
СРР	Cerebral Perfusion Pressure
CSF	Cerebrospinal Fluid
CVR	Cerebrovascular Resistance
DHCA	Deep Hypothermic Circulatory
	Arrest
EEG	Electroencephalography
eNOS	Endothelial Isoform No Synthase
EPO	Erythropoietin
EPOR	Erythropoietin Receptor
FIO ₂	Fractional Inspired Oxygen
GABA	Gamma-Aminobutyric Acid
GMH-IVH	Germinal Matrix Intraventricular
	Hemorrhage
HbO_2	Oxyhaemoglobin
HbO ₂	Oxyhaemoglobin
НЬТ	Total Haemoglobin
Hbt	Total Haemoglobin
HCT	Hematocrit

HI/R HJPOXic-Ischemic/ Reperfusion HIF-1 A High-Intensity Transient Signals ICH Intracranial Hemorrhage ICU Intensive Care Unit INOS Inducible Isoform LCOS Low Cardiac Output Syndrome LFB Low-Flow Cardiopulmonary Bypass MCA Middle Cerebral Artery Nfκb Nuclear Factor Kappa B NIRS Near-Infrared Spectroscopy NMDA N-Methyl-D-Aspartate NO Nitric Oxide NSE Neuron Specific Enolase PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion ROS Reactive Oxygen Species
HITS ICH Intracranial Hemorrhage ICU Intensive Care Unit INOS Inducible Isoform LCOS Low Cardiac Output Syndrome LFB Low-Flow Cardiopulmonary Bypass MCA Middle Cerebral Artery Nfkb Nuclear Factor Kappa B NIRS Near-Infrared Spectroscopy NMDA N-Methyl-D-Aspartate NO Nitric Oxide NSE Neuron Specific Enolase PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
ICH Intracranial Hemorrhage ICU Intensive Care Unit iNOS Inducible Isoform LCOS Low Cardiac Output Syndrome LFB Low-Flow Cardiopulmonary Bypass MCA Middle Cerebral Artery Nfkb Nuclear Factor Kappa B NIRS Near-Infrared Spectroscopy NMDA N-Methyl-D-Aspartate NO Nitric Oxide NSE Neuron Specific Enolase PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
ICU Intensive Care Unit iNOS Inducible Isoform LCOS Low Cardiac Output Syndrome LFB Low-Flow Cardiopulmonary Bypass MCA Middle Cerebral Artery Nfkb Nuclear Factor Kappa B NIRS Near-Infrared Spectroscopy NMDA N-Methyl-D-Aspartate NO Nitric Oxide NSE Neuron Specific Enolase PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
iNOS LCOS Low Cardiac Output Syndrome LFB Low-Flow Cardiopulmonary Bypass MCA Middle Cerebral Artery Nfkb Nuclear Factor Kappa B NIRS Near-Infrared Spectroscopy NMDA N-Methyl-D-Aspartate NO Nitric Oxide NSE Neuron Specific Enolase PAF Platelet-Activating Factor PGE1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP RCP Retrograde Cerebral Perfusion
LCOS Low Cardiac Output Syndrome LFB Low-Flow Cardiopulmonary Bypass MCA Middle Cerebral Artery Nfkb Nuclear Factor Kappa B NIRS Near-Infrared Spectroscopy NMDA N-Methyl-D-Aspartate NO Nitric Oxide NSE Neuron Specific Enolase PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
LFB Low-Flow Cardiopulmonary Bypass MCA Middle Cerebral Artery Nfκb Nuclear Factor Kappa B NIRS Near-Infrared Spectroscopy NMDA N-Methyl-D-Aspartate NO Nitric Oxide NSE Neuron Specific Enolase PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP RCP Retrograde Cerebral Perfusion
MCA Middle Cerebral Artery Nfκb Nuclear Factor Kappa B NIRS Near-Infrared Spectroscopy NMDA N-Methyl-D-Aspartate NO Nitric Oxide NSE Neuron Specific Enolase PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
MCA Middle Cerebral Artery Nfkb Nuclear Factor Kappa B NIRS Near-Infrared Spectroscopy NMDA N-Methyl-D-Aspartate NO Nitric Oxide NSE Neuron Specific Enolase PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
Nfkb NIRS Near-Infrared Spectroscopy NMDA N-Methyl-D-Aspartate NO Nitric Oxide NSE Neuron Specific Enolase PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
NIRS Near-Infrared Spectroscopy NMDA N-Methyl-D-Aspartate NO Nitric Oxide NSE Neuron Specific Enolase PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
NMDA N-Methyl-D-Aspartate NO Nitric Oxide NSE Neuron Specific Enolase PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
NO Nitric Oxide NSE Neuron Specific Enolase PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
NSE PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
PAF Platelet-Activating Factor PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
PGE1 Prostaglandins E1 PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
PVL Periventricular Leukomalacia Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
Q10 ratio of two metabolic rates separated by a 10°C RCP Retrograde Cerebral Perfusion
separated by a 10°C RCP Retrograde Cerebral Perfusion
RCP Retrograde Cerebral Perfusion
<i>C</i>
ROS Reactive Oxygen Species
rSO2 Regional Oxygen Saturation
SCO ₂ Cerebral Oxygen Saturation
SjVO ₂ Jugular Venous Oxygen Saturation
TCD Transcranial Doppler
VEGF Vascular Endothelial Growth
Factor
Vmca Middle Cerebral Blood Flow
Velocity

LIST OF TABLES

Table No.	Title	Page No.
Table 1	Potential markers of acute brain injury in pediatric cardiac surgery.	47
Table 2	Advantages and Limitations of Cerebral Function Monitoring.	55

LIST OF FIGURES

Fig. No.	Title	Page No.
Fig (1)	Biological effects of remote ischemia preconditioning. Transient ischemia of the arm or leg liberates remote cellular adaptation to a subsequent, extended, and potentially lethal period of ischemia in remote tissues.	28
Fig (2)	Schematic diagram of the beneficial acute and longer term effects of erythroportin administration for neuroprotection	31
Fig (3)	Diagram of approach to regional cerebral perfusion. Arrows represent flow of blood from cardiopulmonary bypass circuit through polytetrafluoroethylene graft anastomosed to innominate artery	40
Fig (4)	Multimodality neurophysiologic monitoring algorithm for the management of various stages of CPB and DHCA.	71

Introduction

With advances in surgical techniques and medical care of pediatrics with congenital heart disease (CHD), have significantly declined rates and more made toward preventing being effort is morbidity pediatrics cardiac with associated surgery. particular, neurologic morbidity has been identified to pediatrics with be problematic in CHD (Bellinger et al., 2003).

early postoperative Although central nervous system (CNS) sequelae such as stroke and seizures small percentage of pediatrics with CHD, in importance of more subtle neurologic findings follow-up is being increasingly recognized. findings may include fine and gross These speech language delays, impairments, and and disturbances in visual-motor visual-spatial and abilities, attention-deficit disorders, learning disorders. impaired executive functioning (Menache and et al., 2002).

Mechanisms of (CNS) injury in infants undergoing cardiac surgery include: hypoxia-ischemia, emboli,

reactive oxygen species, and inflammatory microvasculopathy.

Preoperatively, the primary focus is on preventing hypoxic-ischemic injury and thromboembolic insults (*Licht et al.*, 2004).

Modifiable intraoperative factors associated with injury pН management, (CNS) include: hematocrit cardiopulmonary bypass, regional cerebral during of deep hypothermic perfusion, and the use circulatory arrest (Shen et al., 2003).

secondary neurologic Postoperatively, injury may post-cardiopulmonary bypass related be to alterations additional in cerebral autoregulation and hypoxicseizures. ischemic insult, other issues associated or prolonged intensive care with unit stay *(Dent* et al.. 2006).

In addition to modifiable perioperative factors, prenatal, genetic and environmental factors are known to be important (*Glauser et al.*, 1990).

heightened attention toward brain functioning neurodevelopment has generated increased of neurologic monitors that detection of used for are perfusion cerebral hypoxia, abnormalities, and

electrophysiological derangements (Newman et al., 2001).

commonly employed The neuromonitors most near-infrared the include spectroscopy, current era doppler continuous transcranial and electroencephalography. modalities, These in conjunction with conventional physiologic intensive monitoring, could enhance the ability to prevent from hypoxia ischemia, injury that results emboli, hypotension hypocarbia, and hyperthermia (Limperopoulos et al., 2002).

monitoring neurologic Cerebral may improve pediatric cardiac reducing after surgery, the outcome that neurologic deficits patients burden pose to and families (Limperopoulos et al., 2002).

Chapter 1

Mechanisms of neurological insults in pediatrics with heart disease

Mechanisms of Neurological Insults In Pediatrics With Heart Disease

Injurious mechanisms were thought earlier to be confined to intraoperative. Nowadays, it is believed that such mechanisms coexist all through preoperative, intraoperative and postoperative periods (*McQuillen et al.*, 2007).

Before proceeding with the mechanisms of neurological injury it is necessary to indentify various presentations, both clinical and pathological, of neurological injuries which can be detected by neurological examination and or neuroimaging techniques preoperatively or postoperatively.

This chapter will discuss different mechanisms of neurological injuries and their clinical and pathological presentations trying to confine them to specific vulnerable periods (preoperative, intraoperative, and postoperative).

Clinical Presentations of Neurological Injury

Clinical presentations vary with different forms of congenital heart disease (CHD) and the incriminated mechanisms responsible for the neurological injury. Clinical presentations are going to be discussed before proceeding with the mechanisms of neurological.

Clinical presentation of brain injury abnormalities on neurological exam may be detected preoperatively or in the immediate post operative period. Neurobehavioral abnormalities prior to surgery were reported in greater than 50% of new-borns (<1 month at surgery) and 38% of infants (between 1 month and 2 years) with CHD. These abnormalities included hypotonia, motor asymmetry, absent suckling reflex, lethargy, restlessness/agitation, and autism like features. Abnormalities generally persisted or worsened postoperatively, with additional findings of cranial nerve abnormalities and choreoathetosis (*Limperopoulos et al., 2002*).

Other researchers reported the incidence of an acute neurological event (defined as seizure, tone abnormality, or choreoathetosis) to be 25% within the first week after surgery and 56% after the first week. While, 17% of patients in these series presented with clinical findings preoperatively (*Chock et al.*, 2006).

In other reports, the incidence of clinical post operative seizure is 4–11% and may be detected by continuous electroencephalography