Accuracy of fetal transcerebellar diameter in prediction of gestational age in the third trimester

Thesis

Submitted for Partial Fulfillment of Master Degree in **Obstetrics and Gynecology**

By Ahmed Aboulfatth Mohammed Aly Abou-zaid M.B.B.Ch., 2004

Under Supervision of

Prof. Sherif Abdelkhalek Akl

Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Dr. Mohammed Elmandouh Mohammed

Assisstant Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Dr. Ahmed M.Bahaa Eldin Ahmed

Lecturer of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2013

بِشِهُ لِسُلِ الْجَوْزُ الْجَعْمُ مِنْ الْمُعْرِينِ

قَالُوا سُبْحَاثَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْأَلِيمُ الْحَكِيمُ الْحَكِيمُ الْحَكِيمُ

()

Thanks are all to Allah, the Compassionate and the Merciful, for helping me finish this work, and for blessing me throughout my life by His Compassion and Generosity.

Words fail to express my great indebtedness to **Professor Dr.**Sherif Abdelkhalek Akl, Professor of Obstetrics and Gynecology,
Ain Shams University, whose continuous supervision, advice and
fruitful criticism have been of great help in performing this work.

I would like to express my sincere appreciation to **Professor Dr. Mohammed Elmandouh Mohammed**, Assisstant Professor of Obstetrics and Gynecology, Ain Shams University, for his valuable instructions, inspiring guidance and support throughout this work.

I find no words by which I can express my deepest thanks and gratitude to my honored **Dr. Ahmed M.Bahaa Eldin Ahmed** Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for the continuous kind encouragement, support, guidance and advice throughout the entire work.

Finally, I would like to express my deepest gratitude to my whole family who always support me throughout my life.

Ahmed Aboulfatth Mohammed Aly, Egypt, cairo, 2013

TABLE OF CONTENTS

Title	Page No.
1- Acknowledgement	iv
2- Table of contents	iv
3- List of abbreviations	iv
4- List of figures	iv
5- List of tables	iv
6- Introduction	1
7- Aim of the Work	4
8- Review of literature	5
Ultrasound& fetal biometery	5
The cerebellum	27
9- Patients and Methods	37
10- Results	52
11- Discussion	69
12- Summary and Conclusion	76
13- References	80
14-Arabic Summary	

LIST OF ABBREVIATIONS

2D	Two dimensional.
3D	Three dimensional.
AC	Abdominal circumference.
AH	Anterior horn.
BPD	Biparietal diameter.
СВ	Cerebellum.
CC	Cephalic circumference.
СН	Cerebellar hemisphere.
ChP	Choroid plexus.
CM	Cisterna magna.
CP	Cerebral peduncles.
CRL	Crown rump length.
CSP	Cavum septum pellucidum.
CT	Cerebellar tonsils.
CV	Cerebellar vermis.
EDC	Estimated date of confinement.
Fig.	Figure.
GA	Gestational age.
GW	Gestational weeks.
HC	Head circumference.
IQR	Inter quartile range.
IUGR	Intrauterine growth retardation.
LMP	Last menstrual period.
MHz	Megahertz.
mm	Millimeter.
MRI	Magnetic resonance imaging.
NF	Nuchal skin fold.
OFD	Occipito-frontal diameter.
P	Para.
PH	Posterior horn.
SCV	Superior cerebellar vermis.

LIST OF ABBREVIATIONS (CONT.)

SD	Standard deviation.
SGA	Small for gestational age.
Tab.	Table.
TCD	Trans-cerebellar diameter.
TH	Thalami.

LIST OF FIGURES

No.	Title	Page
1.1	Longitudinal section of fetal head and upper spine.	14
1.2	Establishing fetal situs.	16
1.3	Transverse section of the fetal head demonstrating the landmarks required to measure the BPD using the lateral ventricles view.	19
1.4	Transverse section of the fetal head demonstrating the landmarks required to measure the BPD using the thalami view.	20
1.5	A longitudinal section of the fetal head and spine.	23
1.6	Transverse section of the showing an 'outer to outer' BPD measurement. The occipitofrontal diameter, measurements of the anterior and posterior horns of the distal lateral ventricle and distal hemisphere.	23
1.7	Measurement of the head circumference using the two diameter method.	26
1.8	Measurement of head circumference using the ellipse method.	26
2.1	Schematic representation of the ultrasound examination of the fetal posterior fossa.	32
2.2	Axial scan directed posteriorly, corresponding to scanning plane 1 shown in Figure 2.1.	32
2.3	Axial scan directed posteriorly corresponding to scanning plane 2 shown in Figure 2.1.	33

LIST OF FIGURES

No.	Title	Page
2.4	Because of the large cisterna magna (CM), the	33
	cerebellar tonsils (CT) that lie between the	
	posterior aspect of the medulla oblongata and	
	the cerebellar vermis are clearly defined in this	
	view of the fetal head.	
2.5	Measurement of the transcerebellar diameter.	35
	The calipers are positioned to obtain an 'outer to	
2.6	outer' measurement of the cerebellum.	26
2.6	Transverse cerebellar measurement (image	36
	courtesy of Wayne Persutte, PhD). The transverse cerebellar diameter should be	
	measured in an axial view, placing the calipers	
	on the outer, lateral edges of the cerebellar	
	hemispheres.	
3.1	BPD, FL (A) and TCD (B) measured in	43
J.1	pregnant woman 27 years old, P2 37 wks. Of	45
	gestation.	
3.2	BPD (A), FL (B) and TCD (C) measured in	45
	pregnant woman 31 years old, P2 40 wks. Of	
	gestation.	
3.3	BPD (A), FL (B) and TCD (C) measured in	47
	pregnant woman 23 years old, P0+1 33 wks. Of	
	gestation.	
3.4	BPD (A), FL (B) and TCD (C) measured in	49
	pregnant woman 31 years old, P2 40 wks. Of	
	gestation.	
3.5	BPD (A), FL (B) and TCD (C) measured in	51
	pregnant woman 28 years old, PG 31 wks. Of	
	gestation.	
4.1	Box plot showing age distribution in the study	53
	population.	

LIST OF FIGURES

No.	Title	Page
4.2	Box plot showing distribution of GA as	54
	estimated with the LMP/CRL in the study	
	population.	
4.3	Box plot showing distribution of GA as	55
	estimated with the TCD in the study population.	
4.4	Box plot showing distribution of GA as	56
	estimated with the BPD/FL in the study	
	population.	
4.5	Gestational age by category in the study	58
4.6	population.	
4.6	Parity in the study population.	59
4.7	Bland-Altman plot for agreement between the	61
	LMP/CRL and the TCD for estimation of	
	gestational age.	
4.8	Bland-Altman plot for agreement between the	62
	LMP/CRL and the BPD/FL for estimation of	
	gestational age.	
4.9	Bland-Altman plot for agreement between the	64
	LMP/CRL and the TCD for estimation of	
	gestational age before 36 weeks gestation.	
4.10	Bland-Altman plot for agreement between the	65
	LMP/CRL and the BPD/FL for estimation of	
	gestational age before 36 weeks gestation.	
4.11	Bland-Altman plot for agreement between the	67
	LMP/CRL and the TCD for estimation of	
	gestational age after 36 weeks gestation.	
4.12	Bland-Altman plot for agreement between the	68
	LMP/CRL and the BPD/FL for estimation of	
	gestational age after 36 weeks gestation.	

LIST OF TABLES

No.	Title	Page
1.1	Sperman rank correlation between non-	42
	normally distributed numerical variables.	
2.1	Descriptive statistics: Quantitative data.	52
2.2	Descriptive statistics: Qualitattive data.	57
2.3	Bland-Altman analysis for agreement among	60
	the three assessment tools in the whole study	
	population.	
2.4	Bland-Altman analysis for agreement among	63
	the three assessment tools before 36 weeks of	
	gestation.	
2.5	Bland-Altman analysis for agreement among	66
	the three assessment tools after 36 weeks of	
	gestation.	

Introduction

The estimation of pregnancy dates is important for the mother, who wants to know when to expect the birth of her baby, and for her health care provider, so they may choose the way in which to perform various screening tests and assessments. The three basic methods used to help estimate (GA) are menstrual history, gestational age examination, and ultrasonography (Mongelli et al., 2005).

Accurate gestational dating is one of the most important assessments obstetrical providers make in pregnancy, given that all of the various management strategies are dependent on knowing where the patient is in gestation. In addition to traditional biometry, ancillary biometric and non biometric measurements can help narrow the biologic variability fetuses. Moreover, one can employ between nontraditional measurements both in late gestation to assist in determining appropriate gestational age and fetal lung maturity, and in other specific clinical situations, such as oligohydramnios, in which compression of the fetal head and abdomen can lead to difficulty in obtaining an accurate biparietal diameter and abdominal circumference (Amy and Henry, 2008).

Since the beginning of ultrasound fetal measurements, the possibility of population differences has been considered (Cummings, 1982). Some researchers have suggested that population differences in fetal biometry are negligible and that separate standards are not essential (Campbell et al., 1991).

Mounting evidence shows that the fetal cerebellum exhibits a progressive growth throughout the gestation period (Malik and Waqar, 2006, Araújo et al., 2007), so it is an organ capable of providing information on the prediction of gestational age during the pregnancy. Although there are ultrasound studies regarding the correlation between transverse cerebellar diameter (TCD) in fetuses and gestational age, most of them address the third trimester of pregnancy or short gestational periods (Vinkesteijn et al., 2000, Chang et al., 2000, Chavez and Ananth, 2003, Malik and Wagar, 2006). Therefore, it is important to study the correlation between fetal TCD and pregnancy age addressing longer and earlier gestational periods.

The transverse cerebellar diameter (TCD) has been one of the most reliable ultrasound parameters for growth especially early gestation. The TCD was the only parameter that correlated with gestational age by the end of the second trimester (Pinar et al., 2002).

There is relative preservation of normal cerebellar growth in growth-restricted fetuses and a similar rate of growth in singleton and multifetal gestations. The transverse cerebellar diameter therefore represents an independent biometric parameter that can be used in both singleton and multifetal pregnancies to assess normal and deviant fetal growth (Goldstein and Albert, 1995).

Aim of The Work

To assess the accuracy of transcerebellar diameter (T.C.D.) measurement in estimation of the gestational age during the third trimester compared to the current fetal biometric measurements (F.L. and B.P.D.).

Chapter (1)

Ultrasound and Fetal Biometery

1.1 Introduction:

The development and practice of fetology has been dependent on advances in the field of prenatal imaging. Without the ability to accurately visualize the structure and of the fetus within its own intrauterine well-being environment, it would not be possible to diagnose or treat the range of abnormalities that can now be addressed by the multidisciplinary fetal health care team. Rapid advances in the technologic basis of two imaging methods ultrasonography and magnetic resonance imaging (MRI) have resulted in accurate visualization of the fetal Ultrasonographic imaging is an integral part of obstetric practice today. In the United States, it is performed in the majority of all pregnancies (Martin et al., 2003).

1.2 Safety of ultrasonography:

The temperature elevation and its possible effect of cavitations, or the formation of microbubbles in the tissues exposed to ultrasound waves, are known mechanical effects and the main concerns about ultrasound. Effects of ultrasound on tissues have been studied with animal experimentation. In