Different and Recent Trends of Anterior Abdominal Wall Reconstruction

Essay

Submitted in partial fulfillment for the Master Degree in General surgery

By:

Ahmad Maher Ahmad Younis

(M. B., B.Ch)
Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Tarek Ismail Ouf

Professor of General Surgery Faculty of Medicine, Ain Shams University

Dr. Mohamed Ahmed Amin Saleh

Lecturer of Plastic Surgery Faculty of Medicine, Ain Shams University

Dr. Islam Hossam Eldine Salah Eldine Elabbassy

Lecturer of General Surgery Faculty of Medicine, Ain shams University

> Faculty of Medicine Ain Shams University 2013

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Tarek Ismail Ouf** Professor of General Surgery, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Mohamed Ahmed Amin Saleh** Lecturer of Plastic Surgery, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

My heartiest thanks to Islam Hossam Eldine Salah Eldine Elabbassy Lecturer of General Surgery, Faculty of Medicine, Ain Shams University, whose encouragement, expert guidance and support from the initial to the final level of this work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Ahmad Maher Ahmad Younis

Contents

List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction and Aim of the Work	1
Anatomy of anterior abdominal wall	6
Etiology of the anterior abdominal wall defect	27
The preoperative evaluation and surgical planning	36
Surgical management	43
Complication	98
Summary and Conclusion	106
References	110
Arabic Summary	

List of Abbreviations

ACS : Abdominal compartment syndrome

CT : Computed tomography

CVP : Central venous pressure

DFSP : Dermatofibrosarcoma protuberans

DIEA : Deep inferior eigastric vessel

IAP : Increased intrabdominal pressure

ICU : Intensive care unit

ISA : Intermediate staphylococcus aureus

LDM : Latissimus Dorsi Muscle Flap

NF : Necrotizing fasciitis

PAWP : Pulmonary artery wedge pressure

PEEP : Positive end-expiratory pressure

SSI : Surgical site infection

STS : Soft tissue sarcomas

STSG : Split thickness skin graft

STSG : Split thickness skin grafts

TFL : Tensor Fascia Lata Flap

TFL : Tensor fascia lata myocutaneous flap

TRAM : Transrectus abdomens myocutanus flap

VAC : Vacuum-assisted closure technique

List of tables

Table	Title	Page
1	Superficial fascial system zones of adherence	14
2	Local Muscle Flaps	77
3	Distant muscle flaps	82

List of Figures

Fig.	Title	Page
1	Embryo at 12 weeks at time of	7
	abdominal wall formation	
2	Ultrasound anatomy of the anterior	8
	abdominal wall. All three muscles can	
	be easily identified	
3	Langer's lines	9
4	Diagram of superficial fascial system	12
	zones of adherence (black bands, most	
	adherent gray zones, adherent; white	
	zones, least adheren)	
5	The External, internal and transverses	16
	abdominis muscles	
6	The rectus sheath at various levels	18
7	Blood supply - anterior abdominal wall	21
8	Perforator is demonstrated branching at	22
	the level of Scarpa's fascia (dotted line)	
	and anastomosing with adjacent	
	perforators at a subdermal level	
9	The cutaneous distribution of the nerves	24
	and veins of anterior abdominal wall	
10	The cutaneous distribution of the	25
4.4	thoraco-abdominal nerves	20
11	a Gastroschisis. b Gastroschisis with	28
	marked peel and foreshortening of the	
10	intestine	20
12	Mid-line ventral hernia	30
13	CT scan indicates small bowel herniated	33
	into the subcutaneous fat layer, with	
	intact overlying skin (arrowheads)	

Fig.	Title	Page
14	Algorithm for repair of partial	46
	abdominal wall defects. TFL, tensor	
	fasciae latae; RF, rectus femoris; FTT,	
	free tissue transfer; TE, tissue expansion	
15	Algorithm for repair of complete	47
	abdominal wall defects. TFL, tensor	
	fasciae latae; RF, rectus femoris	
16	Algorithm of management of abdominal	48
	wall defects, based on Nozaki	
	algorithmic approach	
17	The fibrous ring including peritoneum,	49
	scar tissue and posterior rectus sheath	
	are drawn together with some tension	
18	Fascia lata grafting	50
19	Technique of the "component separation	52
	technique	
20	Closure of small defect (Abbreviations:	54
	EO, external oblique; IO, internal	
	oblique; TA, transversus abdominus)	
21	Closure of medium size defect	55
22	Closure of large size defect	56
23	(Left) Elevation of skin flaps and	57
	surgical field appearance of plane of	
	dissection with separated external	
	oblique and internal oblique muscles.	
	(Right) Diagram illustrates various	
	surgical planes corresponding to the	
	operative photograph (left)	

List of Figures (cont.)		
Fig.	Title	Page
24	Modified components separation technique.	59
25	Laparoscopic release of external oblique	60
	aponeurosis lateral to the linea semilunaris	
26	(Above, left) Typical abdominal wall hernia.	62
	(Above, right) Elevation of subcutaneous	
	skin flaps to the anterior axillary lines	
	bilaterally. (Below, left) Dissection of	
	hernia, the pelvic inlet. (Below, right)	
	Reconstitution of midline.	
27	(Left) Preoperative views and (right) 6-	63
	month postoperative views of patient with a	
	37-cm anterior abdominal wall defect	
	(largest in series) who received	
	simultaneous abdominoplasty and	
	abdominal wall reconstruction. This patient	
	developed the ventral hernia following	
20	bariatric surgery	
28	Dissection of the space for tissue expander	65
	placement between the external oblique	
	fascia and the complex of the internal	
	oblique-transversalis fasciae and Tissue	
	expanders partially expanded in lateral abdominal wall	
29	Forty-two-year-old man with necrotizing	65
29	pancreatitis underwent 15 debridements,	03
	vicryl mesh closure, and a split thickness	
	skin graft. (A-D)	
30	Vacuum Assisted Closure system	68
31	thoraco-epigastic flap	70
32	the ilio-lumbar bipedicled flap	71
32	the mo-rumbar dipension hap	/ 1

Fig.	Title	Page
33	The groin flap	71
34	Anterolateral flap (a) defect of anterior	72
	abdominal wall (b) postoperative	
	anterolateral thigh flap	
35	Arc of rotation of rectus abdominis	75
36	Muscle harvest limited to area of selected	76
	perforator (square) and to intramuscular	
	dissection to prepare inferior epigastric	
	pedicle.	
37	The tensor fascia lata myocutaneous flap	79
	elevated as island flap Arc of rotation of	
20	tensor fascia lata	90
38	Anatomy and dissection of the tensor fasciae latae	80
39	Course of the rectus femoris muscle is	81
39	depicted on a line between the patella and	01
	ASIS, a standard cutaneous skin paddle is	
	outlined in black	
40	A, Elevated rectus femories flap for	82
10	abdominal wall defect. B, Patient 6 months	02
	postoperative with a well healed wound	
41	The flap cover the upper abdomin	83
42 a	Elevation of latismus dorsi	83
	musculocutaenous flap	
42b	Elevation of latismus dorsi	84
	musculocutaenous flap for ipsilateral	
	abdominal wall defect	
43	Flaps used in abdominal wall reconstruction	85
44	The abdominal wall was reconstructed with	86
	Gore-Tex, and an omentum flap was used to	
	line it	

Fig.	Title	Page
45	Aspect of polypropylene (left) and latex	90
	coated propylene (right) prosthesis	
46	Site of mesh placement during the use of	92
	mesh to augment the abdominal wall after	
	component separation technique	
47	Example of interpositional placement of	95
	AlloDerm in a complex abdominal wall	
	defect	
48	Abdominal wall defect closed with porcine	96
	dermal graft	

Introduction

The management of complex abdominal wall defects has challenged surgeons since the turn of the last century. The increasing complexity of the abdominal wall defects and the development of techniques involving manipulation and mobilization of muscle and myocutaneous flaps have drawn on the expertise of the surgeon (*Ferzoco*, 2011).

The goals of the surgeon in managing complex abdominal wall defects are to restore the structural and functional continuity of the musculofascial system and to provide stable and durable wound coverage to prevent herniation and protect the intraabdominal structures. The Choice of particular procedure depends on the clinical situation and the patient's individual profile (*Germann et al.*, 2000).

The anterior abdomen represents the portion of the trunk between the thorax and pelvis. It is a complex anatomic and functional system comprising: skin, superficial fascia, muscles, transversalis fascia, extraperitoneal adipose tissue and peritoneum (*Stanley*, 2008).

There are many risk factors for the patients having anterior abdominal wall defects which add to the complexity

Introduction and Aim of The Work

of management. This increase has been attributed to the growing age of the population, increasing rates of obesity and diabetes, improved survival from intra-abdominal cancers, improvements in care of the critically injured patient, yielding greater survival of patients following abdominal catastrophe and connective-tissue disorders such as Ehlers-Danlos syndrome (*Franz MG.2011*).

The abdominal wall reconstruction is indicated in many clinical situations. These situations include: Trauma or blast injuries, congenital defects (Omphalocele, Gastroschisis or Exstrophy), acquired defects after tumor resection (Desmoid tumor, intra abdominal sarcoma), incisional hernia and post burn or radiation deformities (*Koshy et al.*, 1999).

Preoperative assessment entails detailed analysis of the patient history, clinical examination to properly identify the size, location, depth and contamination of the defect that will influence the way of reconstruction. Meticulous operative technique and postoperative care are other considerations that offer reasonable functional, aesthetic outcomes and acceptable complication rates (*Trier*, 1990).

There are different techniques for abdominal wall reconstruction including primary closure that used in Partial thickness defects or full thickness defects less than 5 cm. Use

Introduction and Aim of The Work

of local tissues may be feasible as in Components Separation Technique that allows closure of abdominal wall defects through fascial incisions with sequential advancement of tissue while providing dynamic support and continuity to the abdominal wall (*Ramirez*, 2006).

Skin grafts could be used as coverage way. The cosmetic outcome is not accepted by most of the patients rendering the skin graft as a temporary coverage option (*Shaw et al.*, 1990). Abdominal wall reconstruction with autologous fascia lata grafts are indicated when there is exposed mesh and enteric fistulae (*Gopinathan*, 2006).

Flaps are an option for reconstruction but where is many type and indication for each. Local flaps as Fasciocutaneous flap (*Nahai*; 2005).

Fasciocutaneous flaps include the thoracoepigastric flap and the iliolumbar bipedicled flap for the middle third of the abdominal wall. The lower third of the abdomen may be reconstructed with the groin flap, which has a large arc of rotation and The superficial inferior epigastric artery flap that can provide a large soft tissue island for coverage, and the extended deep inferior epigastric flap that is good for defects of the lower abdomen and groin (Grotting et al., 2009).

Local muscle flaps are ideal for partial myofascial

defects of the lateral abdominal wall. The *rectus* abdominis is often the flap of choice for such lateral defects (*Lowe et al.*, 2006).

Distant flaps used in larger partial myofascial and complete defects not amenable to components separation or local flaps. *Tensor fascia lata flap (TFL)* is a reliable flap used to repair defects of the lower two thirds of the abdomen. Free flaps for abdominal wall reconstruction are considered only as a last resort in the reconstructive ladder. They are indicated in abdominal wall reconstruction when there is full thickness defect of moderate to large size, especially if it extends across the midline (*Proshinsky and Ramasatary*, 2006).

Prosthetic materials are ideal for reconstructing larger, clean abdominal wall defects. They allow the surgeon to maintain domain, provide support, and protect the intra-abdominal contents and tissue expanders can be used as part of delayed staged reconstruction which provides good esthetic and pliable coverage (*Gopinathan*, 2006).

Finally the reconstruction of anterior abdominal wall is challenging surgical problem that need multidisciplinary approach including: the general surgeon, plastic surgeon, physiotherapist, nutrition doctors and sometimes the intensive care doctors.