The Effect of Different Finishing Techniques of Ceramic Materials on the Bacterial Adherence

تأثير طرق الانهاء المختلفة للمواد السيراميكية على التصاق البكتريا

Master Thesis Submitted to the Faculty of Oral and Dental
Medicine, Cairo University for Partial Fulfillment of
Requirements for Master Degree In
Fixed Prosthodontics

By Ola Farouk Ahmed

B.D.S (Cairo University)

Faculty of Oral and Dental Medicine
Cairo University
2009

SUPERVISORS

Prof. Dr.

Omaima El Mahallawi

Professor of Fixed Prosthodontic Faculty of Oral &Dental Medicine Cairo University

Prof. Dr.

Somaya Abd El-Latef

Professor of Bacteriology Faculty of Medicine Cairo University

Dr.

Lamiaa Sayed kheiralla

Assistant Professor of Fixed Prosthodontic Faculty of Oral & Dental Medicine Cairo University

Acknowledgment

First and foremost, I fell always indebted to Allah, the most kind and merciful who allowed me to accomplish this work.

My greatest sincere gratitude and deep appreciation to Prof. Dr. Omaima El Mahallawi Professor of Fixed Prosthodontics, Faculty of Oral and dental Medicine, Cairo University, for giving me the honor of working under her supervision, her great help, valuable advices and kind encouragement during this study. Her intellectual and constructive opinions were essential to dress this work in its final form.

I am greatly indebt to Prof. Dr. Somaya Abd El-Lateef Professor of Bacteriology, Faculty of medicine, Cairo University for her generous support and guidance.

My profound gratitude and thanks also to Dr. Lamiaa Kheiralla Assistant Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, for her willing assistance and guidance throughout the steps of this work.

Last but not least, I would like to thank the head of Fixed Prosthodontics department, Faculty of Oral and Dental Medicine and all the staff members of the department for their support throughout the stages of my master degree.

Dedication

To the memory of my dear **mother**, who I miss so much and I was always wishing to share me this occasion.

To my great father, who was the reason for where I am today.

My dearest brother Mohamed because he is always

There for me.

My husband who shared me years of endless patient and support to reach this moment.

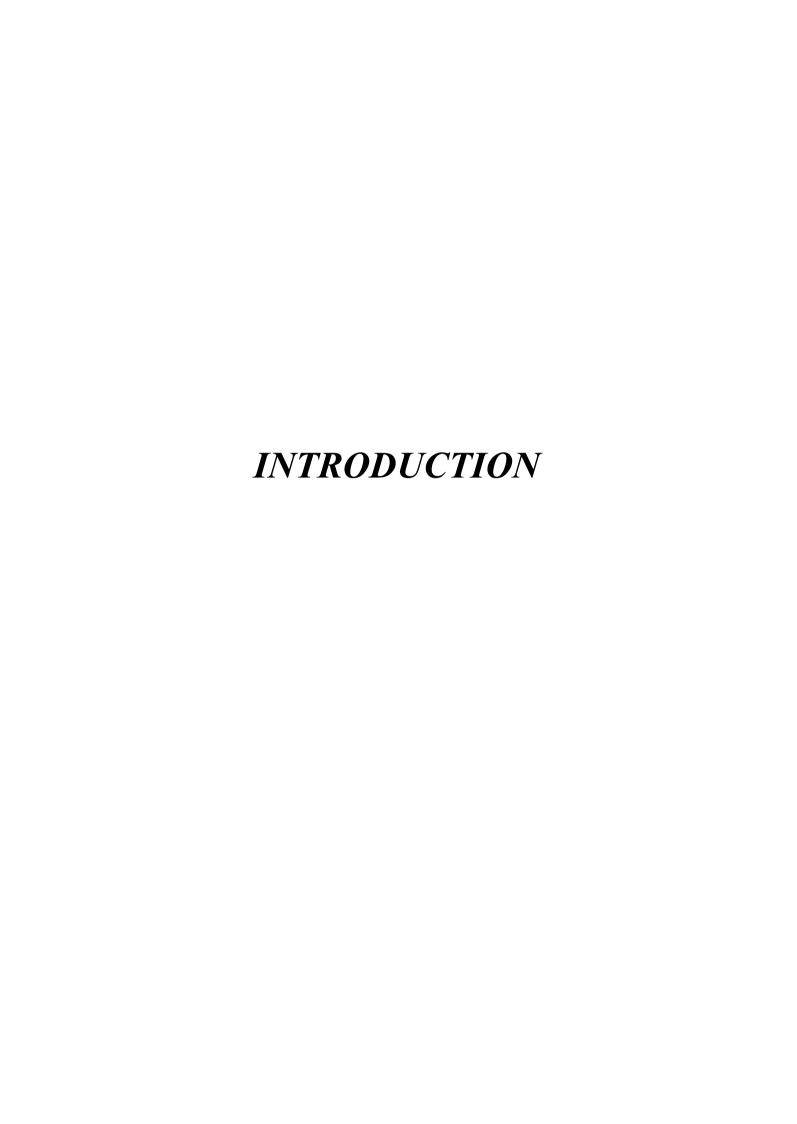
My precious **daughters** for their love and all my family.

List of content

•	List of Tables(i)
•	List of Figures(ii)
•	Introduction1
•	Review of Literature3
•	Aim of Study27
•	Materials and methods28
•	Results47
•	Discussion59
•	Summary and Conclusions65
•	Recommendations67
•	References
•	Arabic Summary

List of Tables

Table	Title	Page
No.		No.
1	Type of porcelain materials	28
2	Means & standard deviations of average surface roughness values (Ra) of group I (Ceramco3) and group II (IPS Empress CAD)	48
3	Means & standard deviation of bacterial count values of group I (Ceramco3) and group II (IPS Empress CAD)	56
4	The Correlation between mean surface roughness (Ra) and bacterial count values.	57


List of Figures

Figures	Title	Page
No.		No.
1.	The grouping of the specimens.	30
2.	Ceramco3 material.	33
3.	IPS Empress CAD machinable ceramic blocks.	33
4.	Copper mold with split ring and square central opening 5x5&2 Millimeter height for construction Ceramco3 specimens, the stone model for Scanning of the milling machine and ceramco3 & IPS Empress CAD specimen.	34
5.	Vita Vacumat 40 T furnace for firing of Ceramco3.	34
6.	The Stone model mounted on the stone holder in Cerec inlab Milling machine ready for scanning.	37
7.	IPS Empress CAD ceramic block inserted into the Cerec inlab milling machine.	38
8.	IPS Empress CAD Ceramic block milled by the Cerec inlab milling machine.	38
9.	Optrafine finishing stones and nylon brush.	40
10.	Fine grained diamond stone (komet. Germany) grain size 46µm.	40
11.	The diamond polishing paste.	41
12.	The alumino-oxide polishing paste.	41
13.	The optical interference microscope.	43

14.	Atomic Force Microscope.	43
15.	Nutrient Broth.	45
16.	Serial dilutions of nutrient broth containing the adherent bacteria.	45
17.	The incubated blood agar plates and the glass rod.	45
18.	The incubator.	46
19.	Graph showing comparison of mean of surface roughness values between group I & group II after different surface finishing techniques.	48
20.	Topographic photomicrograph using Optical interference Microscope of a Ceramco3 specimen which was autoglazed.	49
21.	Topographic photomicrograph using optical interference Microscope of a Ceramco3 specimen, finished with three diamond stones and polished with diamond polishing paste.	49
22.	Topographic photomicrograph using optical interferenMicroscope of a ceramco3 specimen; finished with three diamond stones and polished with alumino-oxide polishing paste.	50
23.	Topographic photomicrograph using optical interference Microscope of a specimen of IPS Empress CAD; finished with three Diamond stones and polished with diamond polishing paste.	50
24.	Topographic photomicrograph using optical interference Microscope of a specimen of IPS	51

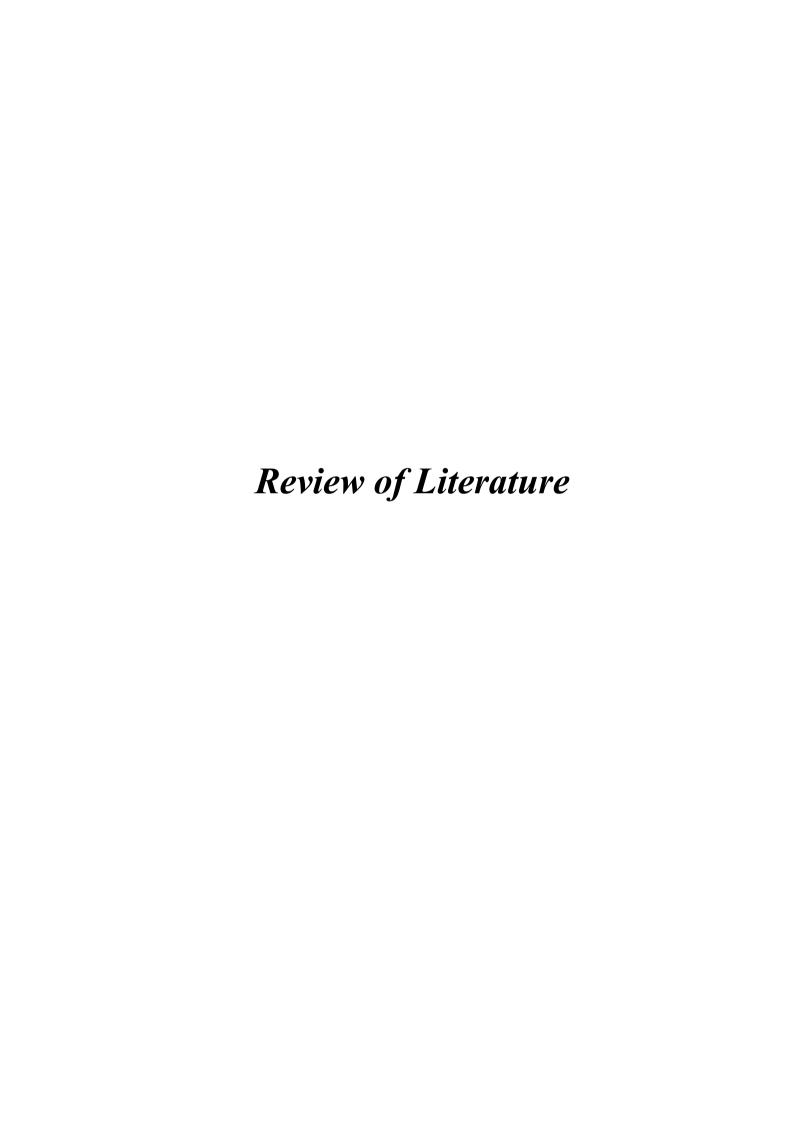
	Empress CAD; finished with three Diamond stones and polished with alumino-oxide polishing paste.	
25.	Three Dimensional Topographic AFM image of Ceramco3 ceramic specimen which was autoglazed.	52
26.	Three Dimensional Topographic AFM image of Ceramco 3 Ceramic specimen finished with three diamond stones and polished with diamond polishing paste.	52
27.	Three dimensional Topographic AFM image of Ceramco3 Ceramic specimen finished with three diamond stones and Polished with alumino-oxide polishing paste.	53
28.	Three dimensional Topographic AFM image of IPS Empress CAD ceramic specimen which was milled.	53
29.	Three dimensional Topographic AFM image of IPS Empress CAD ceramic specimen finished with three diamond stones and polished with Diamond polishing paste.	54
30.	Three dimensional Topographic AFM image of IPS Empress CAD ceramic specimen finished with three diamond stones and polished with alumino-oxide polishing paste.	54
31.	Graph showing comparison of mean of bacterial count values between group I & group II after different surface finishing techniques.	56
32.	Correlation between mean surface roughness	57

	values (Ra) and bacterial counts in Group I (Ceramco3)	
33.	Correlation between mean surface roughness values (Ra) and bacterial counts in Group II (Ips Empress CAD)	58

Introduction

Interest in Ceramics has held the attention of the dental profession for over two hundred years. In spite of the intrinsic hard and brittle nature of these materials, their unsurpassed esthetic and good biocompatibility have encouraged their multitude application.

Glazed dental ceramic has long been considered to give the best surface finish, however experimental studies have shown that with proper choice of polishing methods a surface smoothness similar to that obtained by glazing can be achieved.


Sometimes ceramic restoration requires adjustment after insertion in circumstances that preclude reglazing. Some surface modifications can be essential for correcting occlusal interference, inadequate contour, finishing the margins of ceramic restorations, improving the esthetic appearance and surface smoothness of it.

The rough surfaces created by the adjustment or corrective grinding must be smoothed to avoid; plaque and stain accumulation and subsequent bacterial activity where the host response to this may result in gingivitis, preiodontitis and dental caries. Other problems associated with rough surface include physical irritation of the surrounding tissues and immediate loss of esthetic quality or it may lead to wear of antagonist and adjacent teeth.

Some of the dental ceramics available today are intended for use without any glazing, for example, inlays and onlays made of ceramic blocks manufactured from the CAD / CAM technique are not glazed, but it is possible to polish them intra-oraly to a satisfactory finish.

Although the amount of plaque accumulation is minimal on porcelain, compared to other dental materials, the surface roughness significantly affect plaque accumulation.

Several studies, on polishing dental ceramics, have been published but still there is lack of information regarding the efficiency of different polishing systems and techniques on decreasing surface roughness and plaque accumulation. Consequently this study aimed to investigate the effect of different finishing techniques, on the surface roughness of dental ceramics and its relationship with bacterial adherence.

