

جامعة طنطا كلية الهندسة

قسم الفيزيقا والرياضيات الهندسية

اختبار ات لامعلمية لبعض فصول توزيعات الحياة

رسالة مقدمة إلى

قسم الفيزيقا والرياضيات الهندسية، كلية الهندسة، جامعة طنطا المحصول على درجة دكتور الفلسفة في الفيزيقا والرياضيات الهندسية "الرياضيات الهندسية"

مقدمة من

/ فهيم عبد الحميد عباس

مدرس مساعد الرياضيات الهندسية، قسم الفيزيقا والرياضيات الهندسية، كلية الهندسة، جامعة طنطا تحت إشراف

أ.د/ إيناس فؤاد لاشين أستاذ الرياضيات الهندسية، كلية الهندسة حامعة طنطا أ.د/ الحسيني عبد البر راضى
 أستاذ الإحصاء، معهد الدراسات والبحوث
 الاحصائبة جامعة القاهرة

Tanta University

Faculty of Engineering

Physics and Engineering Mathematics Dept.

Nonparametric Tests of Some Classes of Life Distributions

A thesis submitted to

Physics and Engineering Mathematics Department, Faculty of Engineering,

Tanta University for the degree of **DOCTOR OF PHILOSOPHY** in Physics and Engineering Mathematics "**Engineering Mathematics**"

By

Eng. Faheem Abd El-Hameed Abass

Assistant Lecturer of Engineering Mathematics, Physics and Engineering Mathematics Dept., Faculty of Engineering, Tanta University.

Under Supervision of

Prof. Dr. El-Houssainy Abd El-Bar Rady

Professor of statistics, institute of statistical studies and researches

Cairo University

Prof. Dr. Enas Fouad Lashin

Professor of engineering mathematics faculty of engineering Tanta University

2008

ABSTRACT

In this Thesis procedures for testing the Exponential Better (Worse) than Used in Average on Specific Interval class of life distribution which written as *EBUASI* (*EWUASI*) are developed. Test statistics are presented based on the following approaches:

- 1. Total Time on Test Transform (TTT-Transform).
- 2. Goodness of fit.
- 3. U-statistic.
- 4. Moments inequalities.
- 5. Kernel estimation.

For all developed test statistics, critical values are calculated based on Monte-Carlo simulation, and for some commonly used distributions in reliability power as well as Pitman's asymptotic efficiency are calculated, also Pitman's relative efficiencies are calculated for all approaches except for the Total Time on Test transform; large sample properties and the case of censored data also handled; comparisons between test procedures are made based on the Pitman's relative efficiency.

Key Words: Classes of life distributions, Total Time on Test transform Goodness of fit, U-statistic, Moments inequalities, Kernel estimation, Pitman's efficiency and censored data.

المستخلص العربي

في هذه الرسالة تم عمل صيغ اختبارات مختلفة لاختبار الأسية ضد فصل توزيع الحياة الأسى أفضل (أسوأ) من المستخدم في المتوسط على فترة معينة

Exponential Better (Worse) than Used in Average on Specific Interval *EBUASI (EWUASI)*

وتم إيجاد إحصاءات اختبار بناء على الطرق التالية:

- ١. طريقة الاختبار باستخدام تحويل الزمن الكلي Total Time on Test Transform
 - ٢. طريقة الاختبار باستخدام جودة التوفيق Goodness of fit
 - T. طريقة الاختبار باستخدام إحصاءه U-statistic U
 - ٤. طريقة الاختبار باستخدام متباينات العزوم Moments inequalities
 - ٥. طريقة الاختبار باستخدام تقدير دالة لب النواة Kernel estimation

وتم حساب القيم الحرجة لهذه الاختبارات في حالة العينات الكاملة والعينات المبتورة عشوائيا وكذلك حساب قوة هذه الاختبارات وذلك لبعض عائلات توزيعات الحياة الشهيرة مثل وايبل، توزيع ماكهاما، توزيع معدل الفشل الخطى.

وتم دراسة خواص الاختبارات من حيث اتساقها وتوزيعها التقريبي. وتم حساب الكفاءة النسبية لبيتمان لهذه الاختبارات لبعض التوزيعات.

ACKNOWLEDGEMENT

In actual fact, prayerful thanks, at first to "ALLAH", the merciful GOD, who devoted me everything I hope.

I would like to express my boundless gratitude to *Prof. Dr. El-Houssainy Abd El-Bar Rady*, Professor of statistics, institute of statistical studies and research, Cairo University, for the valuable guidance and advices during the work.

I, heartily, thank, *Prof. Dr. Enas Fouad Lashin*, Professor of engineering mathematics Department of Mathematics and Physics Engineering Faculty of Engineering - Tanta University, for her valuable advice, continuous encouragement and support.

My hearty thankfulness is due to *Prof. Dr. Mahmoud Ibrahim Hendi*, professor of statistics for his kind help, and guidance in the thesis.

I would like to express my great thanks to *Dr. Ibrahim Abdul-Moniem Taib* who introduced me to the simulation procedures used in this area of research.

Finally, I am grateful to all my Professors and colleagues in the department of Engineering Mathematics and Physics, and also to every body, who contributed, in one way or another, to achieve the success of this thesis for their help during the course of this work.

Faheem Abd El-Hameed Abass

CONTENTS

Chapter I:	Introduction and Review of Literatures	1
	1.1 Basics of Reliability Theory	3
	1.2 Order Statistics and Partial Ordering	6
	1.3 Classes of Life Distribution	9
	1.4 Relationships between Classes of Life Distributions	11
	1.5 The EBUASI (EWUASI) class of life distribution	15
Chapter II:	Total Time on Test Transform Test for EB(W)UASI Class of Life Distribution	21
	2.1 The Concept of Total Time on Test	22
	2.2 Characterization of the EBUASI class based on TTT-transform	24
	2.3 Test Statistic Based on the Scaled TTT- transform	26
	2.4 Simulation of Small Sample	27
	2.5 The Power Estimate	29
	2.6 Application	30
Chapter III:	A Goodness of Fit Test for The EB(W)UASI class	32
	3.1 Testing Exponentiality against EBUASI (EWUASI) class	32
	3.2 Pitman Asymptotic Efficiency (PAE)	37
	3.3 Monte Carlo Null Distribution Critical Points	40
	3.4 Power of the test	42
	3.5Testing against EBUASI Alternative	42
	for Right Censored Data	
	3.6 Applications	46
	3.6.1 Complete Data	46
	3.6.2 Censored Data	46
Chapter IV:	Nonparametric Test Based On U-Statistic	48
	4.1 U-statistic	49
	4.2 Testing exponentiality against EBUASI (EWUASI) class	51
	4.3 Pitman Asymptotic Efficiency (PAE)	58
	4.4 Monte Carlo Null Distribution Critical Points	62

	CON	<u>rents</u>
	4.5 Power of the test	63
	4.6 Applications	65
Chapter V:	Moments Inequality for The EB(W)UASI Class of	66
	Life Distribution With Hypothesis Testing	
	Applications	
	5.1 Moment Inequality	67
	5.2 Testing Against EBUASI (EWUASI) Alternatives	71
	5.3 Pitman Asymptotic Efficiency (PAE)	77
	5.4 Monte Carlo Null Distribution Critical Points	81
	5.5 Power of the test	83
	5.6 Testing Against EBUASI Alternative for Right Censored Data	83
	5.7 Applications	87
	5.7.1 Complete Data	87
	5.7.2 Censored Data	87
Chapter VI:	Testing EB(W)UASI Class of Life Distribution Based	89
	On Kernel Estimation method	
	6.1Testing Exponentiality against EBUASI (EWUASI) class	89
	6.2 Pitman Asymptotic Efficiency (PAE)	103
	6.3 Monte Carlo Null Distribution Critical Points	107
	6.4 Power of the test	108
	6.5 Applications	109
Chapter VII:	Conclusions and Future Work	110
	7.1 Conclusions	110
	7.2 Future work	113
	References	114
	List of publications	125
	PHD protocol Arabic Summary	126

List of Tables

Table (2-1)	Critical values for upper percentiles for TTT-test	28
Table (2-2)	The power estimate for TTT-test	30
Table (3-1)	Pitman's Asymptotic efficiency for goodness of fit test	40
Table (3-2)	Critical values for the upper percentile for goodness of fit test	41
Table (3-3)	Power estimates for goodness of fit test	42
Table (3-4)	Critical values in censored data case for goodness of fit test	45
Table (4-1)	Pitman's Asymptotic efficiency for U-test	62
Table (4-2)	Critical values for the upper percentile for U-test	64
Table (4-3)	Power estimates for U-test	63
Table (5-1)	Pitman's Asymptotic efficiency for moment test	81
Table (5-2)	Critical values for the upper percentile for moment test	82
Table (5-3)	Power estimates for moment test	83
Table (5-4)	Critical values in censored data case for moment test	86
Table (6-1)	Pitman's Asymptotic efficiency for kernel test	106
Table (6-2)	Critical values for the upper percentile for kernel test	107
Table (6-3)	Power estimates for kernel test	108
Table (7-1)	Pitman's Asymptotic Relative efficiencies	111

List of Figures

Fig. (1-1)	Bathtub curve	6
Fig. (1-2)	Relationships between some classes of life distributions	12
Fig. (1-3)	Relationships for the EBUASI class	20
Fig. (2-1)	Relation between Critical Values and Sample Size for TTT-test	29
Fig. (3-1)	Relation between Critical Values and Sample Size for goodness of fit test	40
Fig. (3-2)	Relation between Critical Values and Sample Size in censored data case for goodness of fit test	44
Fig. (4-1)	Relation between Critical Values and Sample Size for Utest	63
Fig. (5-1)	Relation between Critical Values and Sample Size for Moment test	81
Fig. (5-2)	Relation between Critical Values and Sample Size in censored data case for Moment test	85
Fig. (6-1)	Relation between Critical Values and Sample Size for Kernel test	108

List of Symbols

Cumulative Distribution Function
Survival Function
Conditional Survival Function
Probability Density Function
Failure Rate (Hazard Rate)
Mean Time to Failure
Increasing Order in Concave
Increasing Order in Convex
Total Time on Test Transform
Scaled Total Time on Test Transform
Sample Mean
Mean and Variance under H _o
Pitman's Asymptotic Efficiency
Pitman's Relative Efficiency between Δ_i and Δ_j
Kernel Function
Null Hypothesis
Alternative Hypothesis
Measure of Departure for the TTT-transform Approach
Measure of Departure for the Goodness of Fit Approach
Measure of Departure for the U-Statistic Approach
Measure of Departure for the Moments Inequalities Approach
Measure of Departure for the Kernel Estimation Approach

$\hat{\Delta}_{1n}$	Empirical Estimation of	1

 $\hat{\Delta}_{2n}$ Empirical Estimation of $_2$

 $\hat{\Delta}_{3n}$ Empirical Estimation of $_3$

 $\hat{\Delta}_{4n}$ Empirical Estimation of $_4$

 $\hat{\Delta}_{5n}$ Empirical Estimation of 5

 Δ_i^c Measure of Departure in case of censored data

 $\hat{\Delta}^{c}_{in}$ Empirical Estimation of Δ^{c}_{i}

List of Publications

- Rady, E. A., Lashin, E. F. and Abass, F. A., "Testing EBUASI Class of Life Distribution Based on Goodness of Fit Approach". Interstat, Index for February, No. (3), (2008).
- 2. Rady, E. A., Lashin, E. F. and Abass, F. A., "Testing *EBUASI* Class of Life Distribution Based on U-statistic". Accepted for publication in the *Journal of International Mathematical Forum*.
- 3. Rady, E. A., Lashin, E. F. and Abass, F. A., "A Moment Inequality for Exponential Better than Used in Average on Specific Interval Class of Life Distribution with Hypothesis Testing Application". To be appear in the *Journal of Statistical Theory and Applications vol. 7, 2008.*
- 4. Rady, E. A., Lashin, E. F. and Abass, F. A., "Testing Exponential Better than Used in Average on Specific Interval Class of Life Distribution Based on Total Time on Test Transform". Submitted for publication.
- 5. Rady, E. A., Lashin, E. F. and Abass, F. A., "Testing Exponential Better than Used in Average on Specific Interval Class of Life Distribution Based on Kernel Method". Submitted for publication.

CHAPTER I

Introduction and Review of Literatures

The word reliability is associated with the civilization of mankind to compare one item/person with another. Trustworthy, dependable and consistent are the words, which can be used to give an indication of why the characteristic of reliability is valued. Reliability cannot be precisely measured with respect to human behavior but can give an indication that a particular person is more reliable than the other. The judgment can be easier when it is associated with human behavior or function. For example, the degree of punctuality of individuals for attending their work place or attending their work without failure can be used to measure their reliability in performing a particular function.

In case of man made products/systems the role of design engineer becomes more crucial to eliminate/minimize the large scale failures to avoid accidents in case of automotive vehicles etc. where risk of human life is involved.

In fact, the characteristic of reliability is usually used to describe some function or task or in widest sense, it may be said to be a measure of performance. A person who completes his work in time is said to be more reliable than the other who does not. Now it is easy to state, that the concept of reliability is not only associated with human behavior or activity but can also be applied to other inventions of the man kind, by directly measuring their performance or by knowing the failure rates of the equipments/systems. The growing awareness of reliability arises from the fact that there is a need for efficient, economic and continuous running of equipment/system in any organization for achieving the targeted production at a minimum cost to face the present competitive world.

In World War II the need for reliability was felt because of failure of many military operations in spite of the best efforts from the users. After World War II a study was conducted which revealed the following facts:

- 1. The electric equipments/systems used by the Navy were operative for only 30% of its total available time because of frequent failures/maintenance problems.
- 2. Army equipments were either under repair/breakdown for almost 60-75% of its total time, which again created problems for a successful mission.
- 3. Air-force study conducted for about 5 years shown that the maintenance costs were very high and even sometimes many fold of the original cost of the equipments/systems due to frequent breakdowns.

The above facts may be the reason that during war period the availability of equipments is of prime importance besides its cost. With the above information investigations were further carried out and a concept of reliability group/engineer came into existence. Since then efforts are continuing in this are to achieve the desired goals in industrial organizations. The concept of reliability in the minds of people/engineers in general has