Evaluating Key Performance Indicators of Neonatal Surgery Services at a Tertiary Referral Center

Thesis
Submitted in Partial Fulfillment of the Requirements of a
Masters Degree
in General Surgery

$\mathcal{B}_{\mathcal{Y}}$ Islam Abudullaziz Hamid

M.B., B.Ch. Faculty of Medicine- Ain Shams University

Under Supervision of

Prof. Dr. Ahmad Medhat Zaki

Professor of Pediatric Surgery Faculty of Medicine- Ain Shams University

Prof. Dr. Ossama Shams El-Din Rasslan

Professor of Microbiology Faculty of Medicine- Ain Shams University

Dr. Aya Mostafa Kamal El-din

Lecturer of Public Health Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams University 2012

سورة البقرة الآية: ٣٢

Praise be to ALLAH for showing me the light in my darkest hour. Thanks to my family for being that light, mother, late father, brother and dearest wife. You all supported and believed in me when no one else did.

I would like to express my gratitude to **Prof. Dr. Ahmad Zaki,** Professor of pediatric surgery, Ain Shams University for being a true mentor and a kind gentleman. Also to **Prof. Dr. Ossama Rasslan**, Professor of microbiology, Ain Shams University for his invaluable opinions that shaped this thesis. I would also like to thank **Dr Aya Mostafa** for her patience and gentle guidance.

I would also like to thank the infection control team at Benha Children hospital who donated their time and effort for compiling the required data.

Finally and above all, I wish to express my deepest respects to the patients and their families, may Allah bless those who lived and solace the parents of those who didn't.

List of Contents

Subject	Page
List of Abbreviations	I
List of Tables	III
List of Figures	VI
Abstract	VII
Introduction	1
Aim of Work	2
Review of Literature	
- History of neonatal surgery	3
- Health care quality	14
- Quality health care and neonatal surgery	
Materials and Methods	
Results	51
Discussion	79
Summary	93
Conclusion	95
Recommendations	97
References	98
Appendices	
Arabic Summary	

List of Abbreviations

American board of pediatrics
Agency for health care research and quality
American Pediatric Surgery Association
Benha Children hospital
Balanced score card
Central agency for population mass assembly
and statistics
Centers for medicare and medicade
Continuous positive airway pressure
Case report forms
Electrocardiogram
East Mediterranean region
Egyptian Pediatric Surgical Association
International Nosocomial infection control
consortium
Institute of medicine
Joint commission for accreditation of health
care organizations
Low and middle income countries
Ministry of health
Non invasive blood pressure monitor
Neonatal intensive care unit
Organization for Economic Co-operation and
Development
Operating room

List of Abbreviations

P4P	Pay for performance
PATH	Performance Assessment Tool for quality
	improvement in Hospitals
RN	Registered nurse, nurse specialist
SMC	Specialized medical centers
SNICU	Surgical Neonatal intensive care unit
SPICU	Surgical pediatric intensive care unit
SpO2	Oxygen saturation in blood
TPN	Total parentral nutrition
USA	United states of America
WHO	World health organization

List of Tables

Table	Title	Page
Table (1)	Timeline of the development of pediatric	10
	and neonatal surgery	10
Table (2)	Sigma values	17
Table (3)	Dimensions and sub dimensions of quality	21
. ,	health care	
Table (4)	Pediatric quality indicators in USA	30
Table (5)	Comparing two cohorts of surgical neonates	36
10010 (0)	from India and Nigeria	
Table (6)	Distribution of patients according to age on	51
14010 (0)	admission	
Table (7)	Distribution of patients according to	51
	gestational age	<i>J</i> 1
Table (8)	Gender distribution	51
Table (9)	Age to weight growth percentile distribution	52
Table (9)	on admission	32
Table (10)	Patient distribution by discharge diagnosis	52
Table (11)	Patient distribution by predicted mortality	52
Table (11)	rate on admission	32
Table (12)	Patient distribution by birth order	53
Table (13)	Patient distribution according to type of	53
1 able (13)	delivery	
Table (14)	Patient distribution according to presence of	53
1 avit (14)	previous infection and its type	
Toble (15)	Patient distribution according to cause of	54
Table (15)	death	J -1
Table (16)	Patient distribution according to residence	54
Table (17)	Patient distribution according to coexisting	54
	congenital anomalies	J -1

List of Tables

Table	Title	Page
Table (18)	Structure indicators score card	55
Table (19)	Focus group opinion(s) on structure indicators	56
Table (20)	Correlation of age on admission and survival	60
Table (21)	Correlating gestational age and survival	60
Table (22)	Correlating gender to survival	61
Table (23)	Correlating age to weight growth percentile on admission and survival	62
Table (24)	Correlating discharge diagnosis to survival	62
Table (25)	Correlating predicted mortality rate on admission to survival	63
Table (26)	Correlating birth order to survival	63
Table (27)	Correlating type of delivery to survival	63
Table (28)	Correlating presence of infection prior to admission and survival	64
Table (29)	Correlating type of previous infection and survival	64
Table (30)	Correlating residence and survival	65
Table (31)	Correlating mechanical ventilation on admission to survival	66
Table (32)	Correlating the presence of other congenital anomalies to survival	66
Table (33)	Correlating hospital acquired infection to survival	67
Table (34)	Correlating pressure ulcers to survival	67
Table (35)	Correlating average caloric intake per kg/day to survival	67
Table (36)	Correlating multiple surgeries to survival	68

List of Tables

Table	Title	Page
Table (37)	Correlating time of surgery to survival	69
Table (38)	Means of length of stay adjusted to different variables and tested for significance	70
Table (39)	Nutritional support effectiveness	73
Table (40)	Sentinel event number and types	73
Table (41)	Percentages of major surgeries performed by consultant, specialist, resident	75
Table (42)	Percentages of major surgeries anesthetized by consultant, specialist, resident	75
Table (43)	Hospital acquired pathogen's resistance patterns	76
Table (44)	Microbiological resistance	78
Table (45)	Comparing HAI and no HAI	83
Table (46)	Comparing mortality rates of specific conditions at specific time of the last century	86
Table (47)	Comparing hospital acquired infections in developing and developed countries with thesis results	88
Table (48)	Comparing antimicrobial resistance with other developing countries	89
Table (49)	Univariate analysis of prognostic risk factors for overall mortality in Manchanda study	92

List of Figures

Fig.	Title	Page
Fig (1)	A case of imperforate anus described in Japanese literature 1840 AD	3
Fig (2)	An Artificial Foster Mother: Baby Incubators at the Berlin Exposition display of Lion incubators in 1896	8
Fig (3)	Professor William Ladd 1880-1967 father of modern pediatric surgery in the United States	12
Fig (4)	Sir Dr Dennis Brown 1892-1966 Father of pediatric surgery in the United Kingdom	12
Fig (5)	The foundling hospital (home) for children, London 1739 AD	15
Fig (6)	Dr Avedis Donabedian. 1919-2000 Armenian American Professor of public health and quality champion	17
Fig (7)	The 3 historical lines of health care quality	18
Fig (8)	Relation of gender to survival	61
Fig (9)	Survivors and non survivors according to previous infection	65
Fig (10)	Survivors and non survivors according to caloric intake	68
Fig (11)	Scatter plot correlating hospital stay to average caloric intake	71
Fig (12)	Antimicrobial resistance	77

Abstract

Background: neonatal surgery is a fairly new discipline. Developed countries have achieved an overall mortality rate of less than 5% for most neonatal surgical conditions. Developed countries are still struggling with mortality rates around 40%. This is not due to lack of resources only, but disorganized health care systems are the major contributors to these results.

Materials and methods: a retrospective chart review of 140 surgical neonates treated over a period of one year at a tertiary referral center in Lower Egypt was undertaken to evaluate the quality of service offered (structure, process and outcomes) using validated performance indicators.

Results: compliance with international structure standards was 25%. Process indicators showed either poor compliance or non applicability due to poor design of medical records. Outcomes indicators showed overall mortality rate of 41%, extended lengths of stay and prevalence of multidrug resistant strains in the surgical NICU among others.

Conclusion: health care services offered to surgical neonates need immediate improvement. Reorganization and reform of services focusing on the feasible pathways of improvement might be the way to better service.

Key words: quality improvement, neonatal surgery, performance indicator(s).

Introduction

Neonatal surgery as we know it today was established by Dr William Ladd of Boston, USA in the 1920-30's¹. Over the past few decades mortality for neonatal surgical conditions has decreased markedly in developed countries. This was not due to operative technical advances but due to a number of extra surgical innovations and inventions. A few of which were the invention of the transistor; the discovery and development of antibiotics and total parentral nutrition². In developing countries, however, surgical neonatal mortality remains high. This is due to multiple factors, some blame poor resources and lack of public interest; others blame disorganization of health care systems and a few put patient risk factors as the primary cause³⁻⁵. Examination of the quality of service and evaluation of the structure, processes and outcomes of neonatal surgical services provided at a tertiary referral center in Lower Egypt may help in improvement of these services and betterment of outcome.

Aim of Work

Defining the construct of health care services provided to surgical neonates at a tertiary referral center in Egypt.

Identifying key performance indicators that can accurately measure the quality of services provided to surgical neonates.

Identifying significant and independent risk factors influencing outcome.

Comparing local key performance indicators to international benchmarks and identifying gaps of performance.

Performing root cause analysis to identify factors contributing to current results.

Development of informed recommendations that can aid in improvement of services and results.

Review of Literature

Neonatal surgery is a fairly new discipline ^{1,6}. Though reports of neonates born with congenital anomalies and attempts to rectify them have existed since antiquity (fig1), it wasn't until the second half of the twentieth century that real progress was achieved ^{2,7}. This was mainly due to advances made in neonatal anesthesia, perinatal care and the introduction of various classes of antibiotics, total parentral nutrition (TPN) and infection prevention measures ^{2,7}. The early pioneers of pediatric and neonatal surgery at the turn of the 20th century were general surgeons who at one point chose to limit their practice to pediatric patients^{1,7}.

Figure 1: A case of imperforate anus described in Japanese literature 1840 AD. (1)

🕮 Review of Literature 🕏

Whatever the reasons were for their choice, the discipline of pediatric surgery owes a great deal to those surgeons, especially when considering that at that time a surgeon had to make a livelihood out of his profession and that families often did not have enough money to pay for treatment of their young let alone the expensive surgeons' fees. It is worth mentioning that pediatric surgical patients used to undergo whatever surgery available at that early stage of the 19th and first few decades of the 20th centuries in adult hospitals, indeed even the earliest children's hospitals did not have permanent surgery staff or surgery services at all, and pediatric surgical patients were often referred to adult surgical departments ¹.

The first children's hospital of the modern ages was built in Paris, France in 1802 "Hôpital des Enfants Malades", 200 years prior to that children and adults were separated in the hospital of Lyon city by a decree issued by king Louis XIII, a surgeon was appointed to the children named Mosnier. With this milestone in the history of pediatrics in general the road towards the specialty of pediatric surgery was set, for the first time in history children would have a hospital and staff completely devoted to the management of illnesses particular to pediatric age group, though a permanent and exclusive surgery staff would not be present until much later than their medical counterparts. After that a plethora of children's hospitals swept across Europe and the United States and Canada. The first