Protein Z gene polymorphisms & protein Z plasma levels in preeclamptic patients

Thesis

Submitted For Partial Fulfillment of M.D. degree in Clinical and Chemical Pathology

By: Mona Abdel Rahman Talaat Ibrahim M.B.B.ch, M.Sc of clinical pathology

Supervisors

Dr. Hanaa Hamed Arnaout

Professor of Clinical Pathology Faculty of Medicine Cairo University

Dr. Shahira Amin Zayed

Professor of Clinical Pathology Faculty of Medicine Cairo University

Dr. Iman Maher Mansour

Professor of Clinical Pathology Faculty of Medicine Cairo University

Dr. Soumaya Mohamed Hassan Abou Elew

Professor of Gynecology and Obstetric Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University

بسم الله الرحمن الرحيم

" سبحانات لا علم لنا الا ما علمتنا انات انت العليم العليم "

صد ق الله العظيم

سورة البهرة اية 31

Abstracts

Protein Z (PZ) is a 62 kDa vitamin K-dependant glycoprotein, synthesized by the liver. PZ has shown to possess procoagulant as well as anticoagulant properties. First PZ enhance the assembly of thrombin with phospholipids surface thus enhancing coagulation. Secondly, it is responsible for binding of PZ dependant protease inhibitor to factor Xa and therefore indirectly act as a natural anticoagulant. High PZ plasma levels may represent a prothrombotic conditions in preeclamptic patients. Thus, estimation of PZ plasma levels is of utmost importance for early diagnosis of preeclampsia before 20th week of gestation. The (A) allele of an intron F polymorphism appears to be a novel protective genetic marker for the risk of preeclampsia being associated with low PZ plasma levels.

Key words:

Protein Z, polymorphisms, preeclampsia

Acknowledgment

I am greatly honored to express my deepest thank and gratitude to **Dr. Hanaa Hamed Arnaout**, Professor of Clinical Pathology, Cairo University, for her constant guidance and unlimited generosity and effort that only a mother could give.

I also, wish to extend my sincere gratitude and appreciation to **Dr. Shahira Amin Zayed**, Professor of Clinical Pathology, Cairo University, for her valuable aid, supervision and encouragement.

I am also deeply indebted and privileged by the supervision of **Dr. Iman Maher Mansour,** Professor of Clinical Pathology, Cairo University.

I wish also to express my deepest thanks to **Dr. Soumaya Mohamed Hassan Abou Elew,** Professor of Gynaecology and
Obstetric, Cairo University

I would also like to express my gratefulness and true appreciation to **Dr. Rania Mohamed Fawzy Hammod,** Assistant professor of Clinical Pathology, Cairo University, for her kind help, guidance and patience all through out the preparation of this work.

Dedication

First of all, I kneel down before Allah for accomplishing this study.

To my mother:

I present every word of this study which would not have been accomplished without her great assistance.

I have every reason to be grateful. I am and will always be.

Contents

SUBJECT	pages
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF THE LITERATURE	4
• Chapter 1 (Haemostasis in normal and complicated pregnancy)	
- Haemostasis in normal pregnancy.	4
- Changes in natural anticoagulant during pregnancy.	17
- Platelet changes during pregnancy.	23
- Placental haemostasis.	25
• Chapter 2 (Protein Z in normal and complicated pregnancy)	
- Protein Z in normal and complicated pregnancy.	31
- Factors affecting PZ expression.	40
- PZ genes polymorphisms and association with its plasma levels.	52
• Chapter 3 (Preeclampsia)	
- Preeclampsia.	57
-Theories of etiological cause of Preeclampsia.	62
- Pathogenesis.	68
- Pathophysiology.	72
- Prediction and prevention of Preeclampsia.	88

-	SUBJECT AND METHODS	
	- Subjects	93
	- ELISA	96
	- PCR- RFLP	102
•	RESULTS	113
•	DISCUSSION	161
-	SUMMARY AND CONCLUSION	173
-	REFERENCES	178
-	ARABIC SUMMARY	
ĺ		1

List of tables

 Human anticoagulant proteins and their inhibitors. Nucleotide sequence and type of the splice junctions and size of exons. Polymorphisms identified in the PZ gene, method of detection, and frequency. Mean PZ plasma levels according to gene polymorphisms identified. 	29 33 38 53
 Nucleotide sequence and type of the splice junctions and size of exons. Polymorphisms identified in the PZ gene, method of detection, and frequency. Mean PZ plasma levels according to gene polymorphisms identified. 	38 53
size of exons. 4 Polymorphisms identified in the PZ gene, method of detection, and frequency. 5 Mean PZ plasma levels according to gene polymorphisms identified.	53
 4 Polymorphisms identified in the PZ gene, method of detection, and frequency. 5 Mean PZ plasma levels according to gene polymorphisms identified. 	
detection, and frequency. 5 Mean PZ plasma levels according to gene polymorphisms identified.	
5 Mean PZ plasma levels according to gene polymorphisms identified.	56
identified.	56
	50
6 Diagnosis of Hypertensive Disorders Complicating	
	58
Pregnancy.	
Indications of severity of hypertension disorders during	59
7 pregnancy.	
8 Causes of thrombophilia in pregnancy.	79
9 Calibration of PZ.	99
10 Assay procedure of PZ.	100
11 Individual data of control group.	113
12 Individual data of mild preeclamptic group.	115
13 Individual data of severe preeclamptic group.	116
14 Individual data of total preeclamptic group.	117
15 Descriptive statistics of clinical and laboratory data and 1	122
PZ plasma level of the control group.	
16 Descriptive statistics of clinical and laboratory data and 1	124
PZ plasma level of mild preeclamptic patients.	

17	Descriptive statistics of clinical and laboratory data and	126
	PZ plasma level of severe preeclamptic group.	
18	Descriptive statistics of clinical and laboratory data and	128
	PZ plasma level of total preeclamptic group.	
19	Frequency of primipara and multipara among preeclamptic	129
	patients and control group.	
20	Patients characteristics and laboratory results of Patients	133
	and Controls.	
21	Individual comparisons between mild preeclamptic	140
	patients and control with regards to age, clinical and	
	laboratory findings and PZ plasma level.	
22	Individual comparisons between severe preeclamptic	143
	patients and control group as regard the age, clinical and	
	laboratory findings and PZ plasma level.	
23	Individual comparisons between mild and severe	147
	preeclamptic patients as regard the age, clinical and	
	laboratory findings, and PZ plasma levels.	
24	Level of protein Z as regard min., max., mean, SD, P-	149
	value in precclamptic patients and controls	
25	Frequency and odd ratio of protein Z intron F G79A and	155
	promoter A-13G polymorphism; in preeclamptic patients	
	and controls.	
26	Association between PZ intron F G79A and promoterA-	157
	13G polymorphism genotypes in preeclamptic patients and	
	controls and corresponding PZ plasma level in µg/L.	
27	Correlations between Protein Z and other variables.	159
28	Mean Protein Z level in different grades of albuminuria.	160

List of figures

Number	Title	page
1	The involvement of blood vessels, platelets and blood	6
	coagulation in haemostasis.	
2	The formation and stabilization of fibrin.	7
3	The classical model of blood coagulation involving a	9
	cascade of zymogen activation.	
4	Activation and action of protein C by thrombin which	13
	has bound to thrombomodulin on the endothelial cell	
	surface.	
5	Activated protein C inactivates factor Va by proteolytic	14
	cleavage at three sites in the Va heavy chain. (b) In the	
	factor V Leiden mutation the Arg506Gln polymorphism	
	leads to glutamine at position 506 with less efficient	
	inactivation of factor V and increased risk of thrombosis.	
6	The action of heparin.	16
7	Fibrinolytic system, tPA: tissues plasminogen activator.	19
8	Mechanism of thrombin-activatable fibrinolysis inhibitor	21
	(TAFI) effects toward fibrinolysis.	
9	Causes of thrombocytopenia during pregnancy.	24
10	Thromboelastography (TEG).	30
11	Two pathways for the inhibitions of factor Xa by protein	32
	Z-dependent protease inhibitor (ZPI) with protein Z (PZ).	
12a	PZ crystalloid structure.	34
12b	PZ chemical structure.	35
13	Master Map: Ideogram of protein Z.	36

15 Location of introns in the structure of human protein Z. 16 Nucleotide sequence of cyclic DNA coding for PZ and the predicted amino acid sequence. 17 Immunofluorescent microscopy of cells stably expressing PZ 18 Immunolocalization of PZ in human umbilical vein endothelial cells (HUVEC) and in the endothelium of arterial and venous vessel sections. 19 Normal placental implantation shows proliferation of extravillous trophoblasts, forming a cell column beneath the anchoring villous. 20 Atherosis is demonstrated in this blood vessel from the placental bed (left, photomicrograph; right schematic diagram of vessel). 21 Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. 22 (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PIGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PIGF so that the growth factors cannot occupy Flt1 on the cell surface.	14	Organization and SacI restriction map of the gene for human PZ.	36
16 Nucleotide sequence of cyclic DNA coding for PZ and the predicted amino acid sequence. 17 Immunofluorescent microscopy of cells stably expressing PZ 18 Immunolocalization of PZ in human umbilical vein endothelial cells (HUVEC) and in the endothelium of arterial and venous vessel sections. 19 Normal placental implantation shows proliferation of extravillous trophoblasts, forming a cell column beneath the anchoring villous. 20 Atherosis is demonstrated in this blood vessel from the placental bed (left, photomicrograph; right schematic diagram of vessel). 21 Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. 22 (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PIGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PIGF so that the growth factors cannot occupy Flt1 on the cell surface.			25
predicted amino acid sequence. 17 Immunofluorescent microscopy of cells stably expressing PZ 18 Immunolocalization of PZ in human umbilical vein endothelial cells (HUVEC) and in the endothelium of arterial and venous vessel sections. 19 Normal placental implantation shows proliferation of extravillous trophoblasts, forming a cell column beneath the anchoring villous. 20 Atherosis is demonstrated in this blood vessel from the placental bed (left, photomicrograph; right schematic diagram of vessel). 21 Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. 22 (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PIGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PIGF so that the growth factors cannot occupy Flt1 on the cell surface.	15	•	
17 Immunofluorescent microscopy of cells stably expressing PZ 18 Immunolocalization of PZ in human umbilical vein endothelial cells (HUVEC) and in the endothelium of arterial and venous vessel sections. 19 Normal placental implantation shows proliferation of extravillous trophoblasts, forming a cell column beneath the anchoring villous. 20 Atherosis is demonstrated in this blood vessel from the placental bed (left, photomicrograph; right schematic diagram of vessel). 21 Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. 22 (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PlGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PlGF so that the growth factors cannot occupy Flt1 on the cell surface.	16	Nucleotide sequence of cyclic DNA coding for PZ and the	39
PZ Immunolocalization of PZ in human umbilical vein endothelial cells (HUVEC) and in the endothelium of arterial and venous vessel sections. Normal placental implantation shows proliferation of extravillous trophoblasts, forming a cell column beneath the anchoring villous. Atherosis is demonstrated in this blood vessel from the placental bed (left, photomicrograph; right schematic diagram of vessel). Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PIGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PIGF so that the growth factors cannot occupy Flt1 on the cell surface.		predicted amino acid sequence.	
Immunolocalization of PZ in human umbilical vein endothelial cells (HUVEC) and in the endothelium of arterial and venous vessel sections. 19 Normal placental implantation shows proliferation of extravillous trophoblasts, forming a cell column beneath the anchoring villous. 20 Atherosis is demonstrated in this blood vessel from the placental bed (left, photomicrograph; right schematic diagram of vessel). 21 Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. 22 (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PIGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PIGF so that the growth factors cannot occupy Flt1 on the cell surface.	17	Immunofluorescent microscopy of cells stably expressing	43
endothelial cells (HUVEC) and in the endothelium of arterial and venous vessel sections. 19 Normal placental implantation shows proliferation of extravillous trophoblasts, forming a cell column beneath the anchoring villous. 20 Atherosis is demonstrated in this blood vessel from the placental bed (left, photomicrograph; right schematic diagram of vessel). 21 Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. 22 (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PIGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PIGF so that the growth factors cannot occupy Flt1 on the cell surface.		PZ	
arterial and venous vessel sections. Normal placental implantation shows proliferation of extravillous trophoblasts, forming a cell column beneath the anchoring villous. Atherosis is demonstrated in this blood vessel from the placental bed (left, photomicrograph; right schematic diagram of vessel). Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PIGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PIGF so that the growth factors cannot occupy Flt1 on the cell surface.	18	Immunolocalization of PZ in human umbilical vein	47
Normal placental implantation shows proliferation of extravillous trophoblasts, forming a cell column beneath the anchoring villous. 20 Atherosis is demonstrated in this blood vessel from the placental bed (left, photomicrograph; right schematic diagram of vessel). 21 Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. 22 (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PlGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PlGF so that the growth factors cannot occupy Flt1 on the cell surface.		endothelial cells (HUVEC) and in the endothelium of	
extravillous trophoblasts, forming a cell column beneath the anchoring villous. 20 Atherosis is demonstrated in this blood vessel from the placental bed (left, photomicrograph; right schematic diagram of vessel). 21 Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. 22 (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PlGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PlGF so that the growth factors cannot occupy Flt1 on the cell surface.		arterial and venous vessel sections.	
the anchoring villous. 20 Atherosis is demonstrated in this blood vessel from the placental bed (left, photomicrograph; right schematic diagram of vessel). 21 Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. 22 (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PlGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PlGF so that the growth factors cannot occupy Flt1 on the cell surface.	19	Normal placental implantation shows proliferation of	63
Atherosis is demonstrated in this blood vessel from the placental bed (left, photomicrograph; right schematic diagram of vessel). 21 Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. 22 (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PlGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PlGF so that the growth factors cannot occupy Flt1 on the cell surface.		extravillous trophoblasts, forming a cell column beneath	
placental bed (left, photomicrograph; right schematic diagram of vessel). 21 Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. 22 (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PlGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PlGF so that the growth factors cannot occupy Flt1 on the cell surface.		the anchoring villous.	
diagram of vessel). 21 Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. 22 (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PlGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PlGF so that the growth factors cannot occupy Flt1 on the cell surface.	20	Atherosis is demonstrated in this blood vessel from the	64
Pathophysiological considerations in the development of hypertensive disorders due to pregnancy. (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PlGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PlGF so that the growth factors cannot occupy Flt1 on the cell surface.		placental bed (left, photomicrograph; right schematic	
hypertensive disorders due to pregnancy. (Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PlGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PlGF so that the growth factors cannot occupy Flt1 on the cell surface.		diagram of vessel).	
(Top) Flt1 on endothelial cells with few sFlt1 in the circulation. Agonists VEGF and PlGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PlGF so that the growth factors cannot occupy Flt1 on the cell surface.	21	Pathophysiological considerations in the development of	66
circulation. Agonists VEGF and PlGF can occupy Flt1. (Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PlGF so that the growth factors cannot occupy Flt1 on the cell surface.		hypertensive disorders due to pregnancy.	
(Bottom) Vessel from preeclamptic patient with abundant sFlt1 that are able to catch VEGF and PlGF so that the growth factors cannot occupy Flt1 on the cell surface.	22	(Top) Flt1 on endothelial cells with few sFlt1 in the	72
sFlt1 that are able to catch VEGF and PIGF so that the growth factors cannot occupy Flt1 on the cell surface.		circulation. Agonists VEGF and PIGF can occupy Flt1.	
growth factors cannot occupy Flt1 on the cell surface.		(Bottom) Vessel from preeclamptic patient with abundant	
		sFlt1 that are able to catch VEGF and PIGF so that the	
		growth factors cannot occupy Flt1 on the cell surface.	
23 Left shows normal placentation and vessel formation. 73	23	Left shows normal placentation and vessel formation.	73
PlGF signals via Flt1.		PlGF signals via Flt1.	
24 Frequency of primipara and multipara among 129	24	Frequency of primipara and multipara among	129
preeclamptic patients and control group.		preeclamptic patients and control group.	

25	Mean systolic and diastolic blood pressures in	134
	preeclamptic patients and control.	
26	Platelet count in preeclamptic patients and control.	134
27	Mean AST in preeclamptic patients and control.	135
28	Mean ALT in preeclamptic patients and control.	135
29	Mean PT in preeclamptic patients and control.	136
30	Mean PC in preeclamptic patients and control.	137
31	Mean PZ level in preeclamptic patients and control.	150
32	Mean PZ level in mild, severe preeclampsia and controls.	150
33	RFLP analysis of PZ gene polymorphism (FG79A) PCR products.	151
34	RFLP analysis of PZ gene polymorphism (A-13G) PCR products.	152
35	RFLP analysis of PZ gene polymorphism (A-13G), (FG79A) PCR products.	153
36	Mean PZ level in relation to FG79A in preeclamptic patients and controls.	158
37	Mean PZ level in relation to A-13G in preeclamptic patients and controls,	158
38	Mean PZ level in relation to different degree of albuminuria in preeclamptic patients.	160

List of abbreviations

ACL Anticardiolipin antibodies

ACE Angiotensin-converting enzyme

ALT Alanine aminotransfease

ADMA Asymmetric dimethyl arginine

ANP Atrial natriuretic peptide

APA Antiphospholipid antibodies

APC Activated protein C

APC-APTT Activated protein C – Activated partial

thrombplastin time

APCR Activated protein C resistance

ASE Age stable element

AST Aspartate aminotransferase

AT-1 AA Angiotensin 1 autoantibody

ATP Adenosine triphosphate

ATIII Antithrombin III

bp Base pair

BP Blood pressure

C4B Complement 4 binding protein

DIC Disseminated intravascular coagulopathy.

DOC Deoxycorticosterone

EGF Epidermal growth factor

EIISA immunosorbent assay

ET-1 Endothelin-1

FDP Fibrin / fibrinogen degradation products

FVL Factor V Leiden

GCX gamma- glutamyl caboxylase

Gla Glutamic acid

HELLP Haemolysis, elevated liver enzyme and low platelet

count.

HMWK High molecular weight kiningen

HNF4α Hepatocytes nuclear factor 4

HESC Human endometrial stromal cells

His Histidine

IL-1 Interleukin-1

IUGR Intrauterine growth retardation

KD Kilodalton

LA Lupus anticoagulant

LDH Lactate dehdrogenase

Leu Leucine

MP Microparticles.

MT Mutant type.

MTHR Methylene tetrahydrofolate reductase

NHBPEP National High Blood Pressure Education

Program

PAP Plasmin antiplasmin

PAI Plasminogen activator inhbitor

PC Protein C

PC Prothrombin concentration

PGG2 Prostaglandin G2

PGH2 Prostaglandin H2

PGI Endothelial prostacyclin

PIGF placental growth factor

PS Protein S

PSGL-1 P- selectin glycoprotein- 1

PT Prothrombin time

PZ Protein Z.

RFLP Restriction fragments length polymorphism.

ROS Reactive oxygen radicles

Ser Serin

sFlt Serum fms like tyrosine kinase

TAFI Thrombin activatable fibrinolytic inhbitor

TAT Thrombin antithrombin

TF Tissue factor

TFPI Tissue factor pathway inhibitor

ThSR Thrombin sensitive region

TM Thrombomodulin

TNF Tumor necrosis factor

TPA Tissue plasminogen activator

Trp-Arg-Arg-Tyr | Tryptophan-Arginine-Arginine-Tyrosine

TTP Thrombotic thrombocytopenic purpura

TXA2 Thromboxan A2

UPA Urokinase type plasminogen activator

VEGF vascular endothelial growth factor

VTE Venous thromboembolism

UTR Untranslated region

VWF vonWillebrand factor

WT Wild type

ZPI Protein Z dependent protease inhibitor.