IMPROVING THE QUALITY AND FLAVOUR OF RAS CHEESE USING DIFFERENT STARTER CULTURES

By

FATMA HOSNY MOHAMMED ALI

B.Sc. Agric. Sc. (Dairy Science and Technology), Ain Shams University, 2006

Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Science (Dairy Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

IMPROVING THE QUALITY AND FLAVOUR OF RAS CHEESE USING DIFFERENT STARTER CULTURES

By

FATMA HOSNY MOHAMMED ALI

B.Sc. Agric. Sc. (Dairy Science and Technology), Ain Shams University, 2006

This thesis for M. Sc. degree has been approved by: Dr. NAYRAH. S. MEHANNA Prof. of Dairy Microbiology, National Agriculture Research Center Dr. ATEF. E. FAYED Prof. of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University Dr. ZAKARIA. M. R. HASSAN Prof. of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University Dr. ALI ABDELAZIZ ALI Prof. of Dairy Science and Technology and Vice President for Post Graduate Studies of Ain Shams University

Date of Examination: 24/9/2013

IMPROVING THE QUALITY AND FLAVOUR OF RAS CHEESE USING DIFFERENT STARTER CULTURES

FATMA HOSNY MOHAMMED ALI

B.Sc. Agric. Sc. (Dairy Science and Technology), Ain Shams University, 2006

Under the Supervision of:

Dr. ALI ABDELAZIZ ALI

Prof. Dr of Dairy Science and Technology and vice president for post graduate studies of Ain Shams University (Principal Supervisor).

Dr. ZAKARIA MOHAMED REZK HASSAN

Prof. Dr of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University.

Dr. IHAB EL-SAYED AUMARA

Associate Prof. of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Fatma Hosny Mohammed Ali: Improving the Quality and Flavour of Ras cheese Using Different Starter Culture, Unpublished M. Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2013. The ability of some lactic acid bacterial strains to grow in sterilized reconstituted skim milk as single strains and in combination with other different lactic acid bacteria was screened to choice their best suitable for Ras cheese milk culturing. Skim milk powder were reconstituted (12% TS) and autoclaved (1 bar/10 min). Reconstituted skim milk was inoculated with (1% v/v) of activated LAB strains and incubated at optimum temperature for 6 h. LAB counts and pH values were measured after different incubation periods (0, 2, 4 and 6 h) at 37°C. All data were statistically analyzed.

Lactobacillus casei, Lactobacillus helveticus, followed by Lactobacillus acidophilus and Bifidobacterium bifidum had the highest ability to grow as single strains in skim milk.

Activated mixed starter culture of Ras cheese (*Streptococcus* thermophilus and Lactobacillus delbruckii ssp. bulgaricus) and single strain of LAB were incubated at 37°C for 6 h. Viable counts and pH value development indicated that, Str. thermophilus and Lb. delbruckii ssp. bulgaricus mixed with Lb. casei followed by Str. thermophilus and Lb. delbruckii ssp. bulgaricus with Lb. helveticus produced the highest growth while pH values were decreased.

Mixture of Ras cheese starter culture and some other lactic acid bacterial strains were used to study the microbial growth and pH value developed in skim milk. LAB counts showed the highest and the growth rate was the fastest in skim milk with the starter culture was containing *Streptococcus thermophilus, Lactobacillus delbrueckii* ssp. *bulgaricus* mixed with *Lactobacillus casei* and *Lactobacillus helveticus*, followed by the starter culture of *Streptococcus thermophilus*, *Lactobacillus delbrueckii* ssp. *bulgaricus*, *Lactobacillus acidophilus* and *Bifidobacterium bifidum*.

Ras cheese treatments were produced from cow's milk (3.5 % fat and 8.56 % SNF). Cow's milk was standardized to casein/fat ratio of 0.7, heat treated (69°C/1 min) and cooled to 35°C. Activated starter cultures

(control: Streptococcus thermophilus and Lactobacillus delbruckii ssp. bulgaricus as control starter culture, CCB: Streptococcus thermophilis, Lactobacillus delbruckii ssp. bulgaricus, Lactobacillus helveticus and Lactobacillus casei, LL: Lactococcus lactis ssp. lactis and Lactococcus lactis ssp. cremoris, or CAB: Streptococcus thermophilis, Lactobacillus delbruckii ssp. bulgaricus, Bifidobacterium bifidum and Lactobacillus acidophilus) was added at the rate of 1.0% at 35°C and then allowed to ripen for 20 min before renneting (% acidity developed from 0.18 to 0.2%). Double-strength rennet was added to the cheese milk at the rate of 3 g/100 kg. Green Ras cheese was salted with 1.0% Sodium Chloride for 24h. Cheese was ripened at $15 \pm 2^{\circ}$ C and 85% relative humidity for 60 days. Fresh and 60th days ripened cheese samples were chemically and microbiologically analyzed. Volatile compounds profile, Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), Transmission Electron Microscopy (TEM) and sensory properties were evaluated in ripened Ras cheese. Soluble protein and non protein nitrogen were significantly high. Also protein degradation on SDS PAGE in Ras cheese produced with the use of CCH followed by CAB starter culture. Volatile compounds profile were starter culture dependant in control and all Ras cheese treatments. A lactic acid bacterial count was significantly higher in Ras cheese with CCH followed by CAB starter cultures as compared with other treatments. On the contrary, the yeast and mould, sporeformers, psychrophilic bacterial reported the lowest counts in Ras cheese with CCH and CAB starter cultures. The data suggested that, the development of Ras cheese flavour could be achieved when the bacterial starter cultures contained the strain of (Streptococcus thermophilus, Lactobacillus delbruckii ssp. bulgaricus, Lactobacillus helveticus and Lactobacillus casei, or Streptococcus thermophilus, Lactobacillus delbruckii ssp. bulgaricus, Bifidobacterium bifidum, and lactobacillus acidophilus.

Key Words: Lactic acid bacteria, starter culture, Ras cheese, ripening period, volatile compound profile, GC-MS, TEM, SDS-PAGE.

ACKNOWLEDGMENT

I would like to express my profound thanks to the Almighty God for helping and providing all I needed to make this research project possible.

I wish to extend my deepest appreciation and sincere gratitude to **Prof. Dr. Ali Abd El-Aziz Ali,** Professor of Dairy Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University for his kind attention and help provided for the accomplishment of this work and for his efforts, supervising the research, writing the manuscript and encouraging me through this course It is difficult to express in words my deep respect to him.

I wish to find the words that can help to express my gratefulness thanks, deepest gratitude and sincere appreciation to **Prof. Dr. Zakaria Mohamed Rezk Hassan,** Professor of Dairy Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, for his true efforts throughout the writing the manuscript, and encouraging me through this course.

I would like to express my sincere gratitude to my advisor **Dr. Ihab El-Sayed Aumara**, Associate Prof. Dairy Science, and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, for the continuous support of my MSc study and research, and for his patience, motivation, enthusiasm, and immense knowledge.

Thanks are also due to **Prof. Dr. Dehau LIU**, Director of Institute of Applied Chemistry, Dept. of Chemical Engineering, and Director of China-Brasil Center for Climate Change and Energy Technology Innovation, Tsinghai University, Beijing, China, for helping and providing with different advises. He taught me many things, which I never have had the opportunity to learn. Thanks also to all of his group members for great help during the period that I spent with them in the institute of Applied Chemistry.

My deepest thanks to my family for their continuous encouragement and support during this study.

CONTENTS

Title	Page
LIST OF TABLES	
LIST OF FIGURES	
LIST OF ABBREVIATIONS	
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. Ras cheese overview	5
2.2. Lactic acid bacteria	6
2.3. Additives in Ras cheese culture	10
2.4. Manufacture of Ras cheese	15
3. MATERIALS AND METHODS	28
3.1.1. Raw milk	28
3.1.2. Starter culture	28
3.1.3. Calcium Chloride	28
3.1.4. Rennet	28
3.1.5. Sodium chloride (NaCl)	28
3.2. Methods	28
3.2.1. Cheese manufacture	28
3.2.2. Ras cheese sampling	29
3.2.3. Analytical Methods	29
3.2.3.1. Milk analysis	29
3.2.3.2. Cheese analysis	29
3.2.3.2.1. Chemical analysis	29
3.2.3.2.1.1. Dry matter content	29
3.2.3.2.1.2. Fat content	29
3.2.3.2.1.3. Salt content	29
3.2.3.2.1.4. Ash content	29
3.2.3.2.1.5. Measurement of pH value	29
3.2.3.2.1.6. Determination of titratable acidity	30
3.2.3.2.1.7. Total nitrogen content	30
3.2.3.2.1.8. Soluble nitrogen content	30

Title
3.2.3.2.1.9. Volatile compounds profile
3.2.3.2.1.10. Transmission Electro Microscopy
3.2.3.2.1.11. Fractionation of protein by Sodium Dodecyl Sulfate (SDS) Poly-Acrylamide Gel Electrophoresis (PAGE)
3.2.3.2.2. Microbiological examinations
3.2.3.2.2.1. Total Viable mesophilic bacteria count (TC)
3.2.3.2.2.2. Lactic acid bacteria (LAB) count
3.2.3.2.2.3. Proteolytic bacterial count
3.2.3.2.2.4. Lipolytic bacterial count
3.2.3.2.2.5. Aerobic spore forming bacterial count
3.2.3.2.2.6. Psychrophilic bacterial count
3.2.3.2.2.7. Yeast and Mold count
3.2.3.2.2.8. Coliform count
3.3. Organoleptic Properties
3.4. Statistical analysis
4.RESULTS AND DISCUSSION
Part I. Study the viability and pH value of different LAB starter cultures in sterilized skim milk
4.1.1. Viability and growth and pH values of single eight LAB strain cultures in skim milk along incubation period
4.1.2. Viability, growth, and pH values of mixed LAB starter cultures in skim milk along incubation period
4.1.3. Study of Viability and pH values of different mixed LAB starter cultures in sterilized skim milk along incubation
period (6h)
period (6h)
period (6h) II. Ras cheese properties produced using different LAB starter
period (6h)
period (6h) II. Ras cheese properties produced using different LAB starter cultures 4.2.1.Microbiological properties of Ras cheese along Ripening Period
period (6h) II. Ras cheese properties produced using different LAB starter cultures 4.2.1.Microbiological properties of Ras cheese along Ripening Period 4.2.1.1. Total viable bacterial count (TVBC)
period (6h) II. Ras cheese properties produced using different LAB starter cultures 4.2.1.Microbiological properties of Ras cheese along Ripening Period 4.2.1.1. Total viable bacterial count (TVBC) 4.2.1.2. Total lactic acid bacterial counts (LAB)

Title
4.2.1.6. Psychrophilic bacterial count
4.2.1.7. Lipolytic bacterial count
4.2.1.8. Proteolytic bacterial count
4.2.2. Chemical composition of Ras cheese along ripening
period
4.2.2.1. Dry matter (DM) content (%)
4.2.2.2. Fat in dry matter content (FDM %)
4.2.2.3. pH value
4.2.2.4. Titratable acidity (as percentage lactic acid)
4.2.2.5. Soluble nitrogen in dry matter content (%SN/DM)
4.2.2.6. Total nitrogen in dry matter content (%TN/DM)
4.2.2.7. Salt in water phase content (% SWP)
4.2.2.8. Ash in dry matter content (%)
4.2.2.9. Volatile Compounds Profile Determination
4.2.2.10. Electrophoretic pattern of ripened Ras cheese with different starter cultures
4.2.2.11. Transmission Electron microscopy (TEM) of ripened Ras cheese with different starter cultures
4.3.Organoleptic properties
5. SUMMARY AND CONCLUSION
6. REFERENCES
ARABIC SUMMARY

LIST OF TABLES

No.		Page
1	Viability of different LAB strain cultures (\log_{10} cfu/mL) in skim milk along incubation time for 6 h.	35
2	ANOVA analysis of viability and growth of different LAB strain cultures (\log_{10} cfu/mL) in skim milk along incubation time for 6 h	37
3	pH values of different eight LAB strain cultures growth in skim milk along incubation for 6 h.	39
4	ANOVA analysis of pH values of different LAB strain cultures in skim milk along incubation time for 6 h.	38
5	Viability and growth of different multiple starter cultures (log $_{10}$ cfu/mL) in skim milk along incubation for 6 h	42
6	ANOVA analysis of lactic acid bacteria counts in skim milk (Log ₁₀ CFU/mL) along incubation time for 6 h.	44
7	pH values of different multiple starter cultures in skim milk along incubation for 6 h.	45
8	ANOVA analysis of pH values along incubation time of skim milk for 6 h.	47
9	Viability of different mixed starter cultures (\log_{10} cfu/mL) in skim milk along incubation for 6 h	50
10	ANOVA analysis of lactic acid bacteria counts (Log $_{10}$ cfu/mL) along incubation time of skim milk for 6 h	49
11	pH values of different mixed starter cultures in skim milk along incubation for 6h	52
12	ANOVA analysis of pH values along incubation time of skim milk for 6h	53
13	Total viable bacterial counts TVBC (log ₁₀ cfu/g) of Ras cheese along Ripening period at 15°C for 60 days	55
14	Total lactic acid bacterial counts LAB (log ₁₀ cfu/g) of Ras cheese along Ripening period at 15°C for 60 days	57
15	Spore forming bacterial counts (log ₁₀ cfu/g) of Ras cheese along Ripening period at 15°C for 60 days	60
16	Yeast and Moulds counts (log ₁₀ cfu/g) of Ras cheese along Ripening period at 15°C for 60 days	62
17	Psychrophilic bacterial counts ($log_{10}cfu/g$) of Ras cheese along Ripening period at 15°C for 60 days	64

No.		Page
18	Lipolytic bacterial counts (log ₁₀ cfu/g) of Ras cheese along Ripening period at 15°C for 60 days	68
19	Proteolytic bacterial counts (log ₁₀ cfu/g) of Ras cheese along Ripening period at 15°C for 60 days	69
20	Dry matter content (%) of Ras cheese along ripening period at 15°C for 60 days	71
21	Fat in dry matter content (FDM%) of Ras cheese along ripening periodat15°Cfor60 days	73
22	pH value of Ras cheese along ripening period at 15°C for 60 days	76
23	Titratable acidity (as lactic acid) of Ras cheese along ripening period at 15°C for 60 days	77
24	Soluble nitrogen in dry matter content (%SN/DM) of Ras cheese along ripening period at 15°C for 60 days	77
25	Total nitrogen in dry matter content (%TN/DM) of Ras cheese along ripening period at 15°C for 60 days	79
26	Salt in water phase content (% SWP) of Ras cheese along ripening period at 15°C for 60 days	80
27	Ash in dry matter content (%) of Ras cheese along ripening period at 15°C for 60 days	82
28	Concentration of the identified compounds in the volatiles of Ras cheese samples	84
29	Organoleptic properties of different Ras cheese with different starter cultures at the end of ripening period	92

LIST OF FIGURES

No.		Pag
1	Viability of different LAB strain cultures (log ₁₀ cfu/mL) in skim milk along incubation time for 6 h	36
2	pH values of different LAB strain cultures ($log_{10}cfu/mL$) in skim milk along incubation time for 6 h	40
3	Viability of different multiple LAB strain cultures (log ₁₀ cfu/mL) in skim milk along incubation time for 6 h	43
4	pH values of different multiple LAB starter cultures (\log_{10} cfu/mL) in skim milk along incubation time for 6 h	46
5	Viability of different mixed LAB starter cultures (log ₁₀ cfu/mL) in skim milk along incubation time for 6 h	51
6	pH values of different mixed LAB starter cultures ($log_{10}cfu/mL$) in skim milk along incubation time for 6 h	53
7	Total viable bacterial counts (log ₁₀ cfu/g) of Ras cheese during the ripening period	56
8	Lactic acid bacteria counts (log ₁₀ cfu/g) of Ras cheese during the ripening period	58
9	Spore forming bacterial counts (\log_{10} cfu/g) of Ras cheese during the ripening period	61
10	Yeast and moulds counts (log ₁₀ cfu/g) of Ras cheese during the ripening period	63
11	Psychrophilic bacterial counts (log ₁₀ cfu/g) of Ras cheese during the ripening period	65
12	Lipolytic bacterial counts (log_{10} cfu/g) of Ras cheese during the ripening period	68
13	Proteolytic bacterial count (log ₁₀ cfu/g) of Ras cheese during the ripening period	70
14	SDS polyacrylamide gel electrophoresis (PAGE) of Ras cheese made from heat treated milk using different starter cultures	88
15	Transmission Electron microscopy (TEM) of ripened Ras cheese with different starter cultures	90

LIST OF ABBREVIATIONS

AOAC American Official Analysis Chemists.APHA American Public Health Association.ATCC American Type Culture Collection.

B&T Body and Texture.c.f.u Colony forming unit.DM Dry matter content.

DSMZ Deutsche Sammlung Von Mikroorganismen und Zell Kulturen.

EMCC Egyptian Microbial Culture Collection, Fac. Of Agric., Ain

Shams Univ.

Et al. And others (et alii).

FAO Food and Agriculture Organization.

FDM Fat in dry matter.

FVFA Free Volatile Fatty Acids.

NPN Non protein nitrogen.

SAS Statistical Analysis System.

SDS Sadium Dadayal Sulfate

SDS Sodium Dodecyl Sulfate.

PAGE Polyacrylamide Gel electrophoresis.

SN Soluble nitrogen.SWP Salt in water phase.

TEM Transmission Electro Microscopy.

TN Total nitrogen.

TVFA Total Volatile Fatty Acids.WHO World Health Organization.

I. INTRODUCTION

Ras cheese is one of the most important traditional hard cheese in Egypt. The great popularity of Ras cheese by consumers is due to its unique, gratifying, flavor and texture. Usually, Ras cheese is suffering from lack of uniformity. The acceptability of cheese depends on its appearance and sensory properties (flavour, texture and colour). Among these, flavour is the most important attribute for the consumer.

Ras cheese is manufactured in a high proportion under artisan production, in rural areas and small factories. It was produced from raw cow's milk or a mixture of cow and buffalo milks without using starter cultures (**Hofi** *et al.*, 1970). In such production situation, the fermentation occurs by the wild microflora present in raw milk and surrounding environment. The cheese wheels are usually stored under moist and uncontrolled hygienic conditions, which contaminated by moulds and yeasts. Therefore, the final flavour and texture influenced by the action of the flora.

Recently, the Egyptian organization for standardization and quality control published new standards providing that all cheese varieties should be made from pasteurized milk. These standards aim to produce high quality products for consumer health. This means that cheese makers should use pasteurized milk and starter cultures in the manufacture of such cheese to maintain the typical flavour of produced cheese. Although, the several studies on this type of cheese, the typical flavour and the flavour volatile compounds of cheese have not yet defined.

Ras cheese is the only Egyptian hard cheese that is manufactured in Egypt. It is very similar to the Greek "Kefalotyri" but is made under artisan condition from raw cow's milk or from a mixture of cow's and buffalo's milk. It can consume after more than three months of ripening (Hofiet al., 1970; Scott, 1981; Phelan et al., 1993 and Abou-Donia, 2002).

Ras cheese has been produced from raw cow's milk or a mixture of raw cow and buffalo's milks for a long time without using starter cultures (Sabbour, 1966; Abou-Donia, 2002 and Awad et al., 2003). The fermentation always occurs by native microflora that was obtained from raw milk and the environment. Moreover, Ras cheese is stored in moisture and

uncontrolled hygienic conditions. For this reason there are different groups of microorganisms present in the cheese, some of them contribute to the flavor and the texture development and others may be pathogenic or cause defects in cheese (Darwish et al., 1994; Abou-Donia., 2002; Awad et al., 2003 and Abdella et al., 2006).

Cheese flavour believed to result from a balance between a number of components released by enzymic reactions rather than by chemical interactions (Delahunty and Piggott, 1995). The characteristics of the flavour profile of ripened cheeses affected by proteolysis of caseins and in some types also by lipolysis and carbohydrate analysis (Adda. 1986; Crow et al., 1993). The typical cheese flavour results from further degradation of amino acids, due to the pathways for conversion of amino acids by starter bacteria (Broome and Limsowtin, 1998). That is true in cheeses, produced from pasteurized milk and using starter cultures under aseptic conditions. However, cheese ripening influenced by different factors, including the microflora of the raw milk, coagulant, starter cultures and by adventitious contamination of the cheese by non-starter bacteria (Fox, et al., 1996). Based on sensory evaluation and chemical analysis of cheeses, various, groups of volatile compounds had identified as being responsible for the final taste and aroma of cheese. These compounds comprise fatty acids, esters, aldehydes, alcohols, ketones, sulphur compounds and various other components (Bosset and Gauch, 1993; Engels, et al, 1997; Urbach, 1995; Ayad et al., 2004; and Mehanna and Pasztor-Huszar., 2012).

The major biochemical pathways which occur in cheese ripening are the following: the metabolism of residual lactose, lactate and citrate (sometimes, although erroneously, referred to as 'glycolysis'), liberation of free fatty acids, FFA (lipolysis), associated catabolic reactions and the degradation of the casein matrix to a range of peptides and free amino acids, FFA (proteolysis), and subsequent reactions involved in the catabolism of FAA.

The structural components of the proteolytic system of LAB can be divided into three groups on the basis of their function: (İ) proteinases, which split caseins to peptides, (İİ) peptidases hydrolyzing peptides and (İİİ) transport systems that trans-locate the breakdown products across the cytoplasmic