

ROLE OF MULTISLICE DENTAL CT IN ASSESSMENT OF DENTAL IMPLANTS

Thesis

Submitted for partial fulfillment of MD degree in Radiodiagnosis

By

Safa Abd Elatty Abd Elgalil Saleh

M.B., B.Ch., M.Sc. Radiodiagnosis Faculty of medicine-Ain Shams University

Under Supervision of

Dr.Ahmed Mohamed Monib

Professor of Radiodiagnosis
Faculty of Medicine-Ain Shams University

Dr. Yasser Ali Abd Elmawla

Professor of Radiodiagnosis Faculty of Medicine-Ain Shams University

Dr.Ahmed Fathy Abd Elghany

Assistant Professor of Radiodiagnosis Faculty of Medicine-Ain Shams University

2013

دور الأشعة المقطعية متعددة المقاطع للفك فى تقييم زراعة الأسنان

رسالة

مقدمة توطئة للحصول على درجة الدكتوراه في الأشعة التشخيصية

من الطبيبة / صفا عبد العاطى عبد الجليل صالح

بكالوريوس الطب و الجراحة - ماجستير الأشعة التشخيصية كلية الطب-جامعة عين شمس

تحت اشراف

الدكتور / أحمد محمد منيب

أستاذ الأشعة التشخيصية

كلية الطب - جامعة عين شمس

الدكتور/ياسرعلى عبد المولى

أستاذ الأشعة التشخيصية

كلية الطب - جامعة عين شمس

الدكتور / أحمد فتحى عبد الغنى

أستاذ مساعد الأشعة التشخيصية

كلية الطب - جامعة عين شمس

7.14

Acknowledgment

First and foremost thanks Allah, to whom I relate any success in achieving any work in my life.

I would like to express my deepest gratitude and profound respect to **Prof. Dr. Ahmed Mohamed Monib**, Professor of Radiodiagnosis, Ain Shams University, for his endless patience and guidance. This work could not have reached its goal without his support.

I wish to express my thanks to **Prof. Dr. Yasser Ali Abd Elmawla**, Professor of Radiodiagnosis, Ain Shams University, for his help and encouragement.

My profound thanks and appreciation to Prof. **Dr. Ahmed Fathy Abd Elghany**, Assistant Professor of Radiodiagnosis, Ain Shams University, for his help and encouragement.

Finally, I would like to express my deepest thanks and gratitude to all of my professors, colleagues in Radiodiagnosis Department, and family members who stood beside me throughout this work giving me their support, sympathy and guidance.

Contents

Page
• Introduction1
• Aim of the Work4
• Anatomy of the Jaw5
• Types of Dental I mplants116
• Technical and physical principles
of multi-slice dental CT125
• Patients and Methods140
• Results152
• Illustrative Cases
• Disscusion
• Summary and Conclusion179
• References182
Arabic Summary

List Of Abbreviations

ABPA Allergic broncho-Pulmonary Aspergillosis

ACS American Cancer Society

BA Bronchial Artery

BAE Bronchial Artery Embolization

CB Central Bronchiectasis

CT Computed Tomography

C-TYPE Central Type

BI Bronchus Intermedius

Cm Centimeter

3D 3 Dimensional

DA Descending Aorta

GE General Electric

HAM High Attenuation Mucus

HU Hounsfield Unit

HRCT High Resolution Computed Tomography

FOB Fiberoptic Bronchoscopy

ICBT Intercostobronchial trunk

IPA Interlobar pulmonary artery

IV Intravenous

MIP Maximum Intensity Projection

MinIP Minimum Intensity Projection

Min Minute

ml Milliliter

List of tables

Tab. No.	Title	page
1	Criteria for Implant Success	43
2	Factors affecting implant stability	46
3	Beam pitch and slice pitch	58
4	Misch Bone Density Classification	84
5	Description of the study population	97
6	Parameters for Dental MSCT:	100
7	Descriptive Statistics of Mandibular cases.	
8	relation between Post-follow up CT results and patients age	
9	the relation between Post-follow up CT results and posterior Cortical Thickness at the edentulous area	
10	the relation between Postoperative-follow up CT results and Width of the edentulous area	
11	the relation between Postoperative-follow up CT results and height of the edentulous area	
12	the relation between Postoperative-follow up CT results and CT density of the edentulous area	
13	As regard the relation between Postoperative-follow up CT results and Preoperative CT results	
14	Descriptive Statistics of maxillary cases:	
15	the relation between postoperative follow up CT results and Width of the edentulous area	
16	the relation between Postoperative follow up CT and height of the edentulous area	
17	the relation between Postoperative-follow up CT results and CT density at the edentulous area	
18	the relation between Postoperative follow up CT results and Preoperative CT results	
19	list of cases with maxillary implant insertion, cause of examination and postoperative CTresults	130
20	list of cases with mandibular implant insertion, cause of examination and postoperative CT results	131

List Of Figures

Fig. No.	Title	page
1	Anterolateral superior view of the Mandible	7
2	Left posterior view of the Mandible.	9
3	Lateral drawing of the mandible.	10
4	A reconstructed panoramic image showing the	
	mandibular canals.	12
5	Cross-sectional CT reformatted images showing the	
	mandibular canal.	12
6	CT scan of The Mandible.	14
7	CT scan of The Mandible.	17
8	Graphic of maxilla.	20
9	Graphic shows hard palate.	20
10	3D Volume-rendered of the mandible and maxilla.	21
11	Axial bone CT image of the maxilla.	23
12	Inferior view of the maxilla.	26
13	Anatomy of the tooth	27
14	Subgroups of dental implants.	32

1 =	DI . 1 C 1 1 . 1	22
15	Photograph of a subperiosteal implant.	33
16	Illustration demonstrating the components of an implant.	35
17	Recommended minimum distances (in millimeters)	
	between implants and between implants and natural teeth	38
18	Graphic of the implant.	41
19	Implant Stability Dip.	45
20	Conventional CT (a) and helical CT (b)	49
21	Pixel, Voxel and Matrix	51
22	Single helix of spiral CT	53
23	Interweaving Quad-Helix of data acquisition in MSCT	54
24	Multiple rows of detectors .	55
25	The single slice spiral CT use one channel while two and	
	four channels are used in the dual and quad systems	56
26	The pitch is the most important parameter in spiral	
	scanning.	57
27	Dual slice vs. single slice volume coverage	61
28	CT contribution to the collective effective radiation dose.	62
29	X-ray beam Pitch and radiation dose	63
30	Scanned length and radiation dose	63

Fig. No.	Title	page
31	Conventional vs. spiral CT radiation dose	64
32	Slice collimation and patient dose	65
33	MSCT, slice pitch 4 compared with 3 and the resulting	
	overlap	66
34	Diagram showing three types of scans obtained in CT	69
35	Axial image of mandible with a superimposed curve.	70
36	Axial image of maxilla with a superimposed curve	71
37	Normal dental CT examination	75
38	Cross-sectional CT through the mandible.	77
39	Cross-sectional CT views through the mandible mesial to	
	the mental foramen.	78
40	Cross-sectional CT images of patient with	
	vestibulolingual atrophy.	79
41	Cross-sectional views through the posterior maxilla.	80
42	Cross-sectional views images more anterior on the	
	maxilla.	80
43	Cortical niche sign.	82
44	CT images and drawings of the mandible show the	
	classification of alveolar bone atrophy of Cawood and	
	Howell.	86

45	Osseointegration failure of a central implant fixture in a	
	partially edentulous patient.	88
46	Implant failure.	89
47	CT-generated panoramic radiograph demonstrating	07
	impingement of the implant to the IAN	92
48	CT axial slice demonstrating extensive periimplantitis	
	and misplacement of implants in the anterior maxilla.	91
49	CT images showing a particulate bone graft filling the	
	floor of the right maxillary sinus.	93
50	Perforation of the lingual cortical during drilling	94
51 A&B	Case 1 preoperative dental MSCT.	132
52	Case 1 postoperrative dental MSCT.	134
53	Case 2 preoperative dental MSCT.	135
54	Case 2 postoperative dental MSCT.	136
55	Case 3 preoperative dental MSCT.	137
56	Case 3 postoperative dental MSCT.	138
57	Case 4 preoperative dental MSCT.	139
58	Case 4 postoperative dental MSCT.	140
59	Case 5.	141
60	Case 6.	143
61	Case 7.	
62	Case 8.	
63	Case 9.	
64	Case 10.	
65	Case 11	
66	Case 12.	
67	Case 13.	

List of Charts

Chart No.	Title	page
1	Showing sex distribution of the cases included in this	
	study.	106
2	Relation between Post-followup CT results and age of	
	patients.	108
3	Relation between Postoperative-follow up CT results	
	and posterior Cortical Thickness at the edentulous area.	110
4	Relation between Postoperative-follow up CT results	
	and Anterior Cortical thickness at the edentulous area.	111
5	Relation between Postoperative follow up CT results	
	and Width of the edentulous area	113
6	Relations between Postoperative follow up CT results	
	and height of the edentulous area.	114
7	Relations between Postoperative follow up CT result	
	and CT density of the edentulous area.	116
8	Relation between Post-follow up CT results and	
	Preoperative CT results.	117

9	Relation between Postoperative follow up CT results and age duration	
	and age duration	119
10	Relation between Postoperative follow up CT results	
	and posterior Cortical Thickness at the edentulous area	121
11	Relation between Postoperative follow up CT results	
	and Anterior Cortical thickness at the edentulous area.	122
12	Relation between Post-follow up CT results and Width	
	of the edentulous area	124
13	Relation between Post-follow up CT results and height	
	of the edentulous area.	125
14	Relation between Postoperative follow up CT results	
	and CT density at the edentulous area.	127
15	Relation between Postoperative follow up CT results	
	and Preoperative CT results	128

Introduction

The use of dental implants to restore missing teeth has become increasingly widespread over the past two decades. Numerous clinical studies with dental implants have revealed encouraging outcomes (*Turkyilmaz & McGlumphy*, 2008).

Dental implants are made of biocompatible materials and they are surgically inserted into the jaw bone primarily as a prosthetic foundation (*Chaturvedi*, 2009).

The successful outcome of any implant procedure requires a series of patient-related and procedure-dependent parameters. The volume of bone available and quality of the bone are highly associated with the type of surgical procedure and the type of implant, and both of these factors play a vital role in the success of dental implant surgery (*Turkyilmaz and McGlumphy*, 2008).

The jaw comprises two complex bony structures: the mandible and maxilla. Their curved or archlike configuration makes radiographic imaging difficult. Furthermore, the superimposition of dense teeth and roots may obscure underlying tissues (*Abrahams*, 2001).

Assessment with panoramic images, which were used previously, was inadequate because they give two dimensional

images providing no information relating to the thickness of the jaw. They had a distortion factor of about 25%, which made accurate measurements difficult (*Abrahams*, 2001).

Dental CT has proved to be an excellent procedure for characterizing the anatomy and dental-related abnormalities of the jaw. It is particularly important for preoperative planning in dental implantology because it aids in the appropriate choice of implant size and helps to avoid injury of critical structures such as the mandibular canal or maxillary sinus (*Gahleitner*, *et al. 2001*).

Dental CT is a useful tool to determine the bone density in the implant recipient sites identifying sites suitable for implant placement and favorable for osseointegration (*Turkyilmaz &McGlumphy. 2008*).

Postoperatively, dental CT images can show the failure of an endosseous implant to osseointegrate, improper placement of an implant, and violation of important structures (eg, the mandibular canal, nasal cavity, or maxillary sinus) (*Sommer*, 2009).

Dental computed tomography provides high spatial resolution images and also offers the additional possibility of multi-planar reconstructions in high-quality and true-to-size hard copies. And these reconstruction images help eliminate the streak artifact from dental restorations that degrades direct coronal CT scans (*Abrahams*, 2001).

The image quality was improved with the advent of multislice CT scanning, which allows acquiring more slices in a shorter time, due to multiple detector rows, faster table speeds and the opportunity of greatly increasing the speed of data acquisition. So, more anatomic sites are scanned with thinner slices than those provided by spiral CT, which results in more accurate measurements for placement of fixtures (*Paes Ada, et al. 2007*).

Multi-slice CT scanning has improved the 3D reconstruction, providing images with richer details and more precise information about the mandibular canal, incisive foramen and alveolar process location (*Paes Ada, et al. 2007*).