CORRELATION BETWEEN COVERED SKIN TRANSCUTANEOUS BILIRUBIN ESTIMATION AND SERUM BILIRUBIN MEASUREMENT DURING AND AFTER PHOTOTHERAPY

Thesis

Submitted for partial fulfillment of Master Degree in Pediatrics

Presented by

Ehab El-Desoky Mohamed Zahran

M.B.B.CH (2008) Ain Shams University

Under Supervision of

Prof. Mohamed Sami El-Shimi

Professor of pediatrics
Faculty of Medicine, Ain Shams University

Prof. Sahar Mohamed Ahmed Hassanein

Professor of pediatrics
Faculty of Medicine, Ain Shams University

Dr. Soha Mohamed Khafagy

Lecturer of pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University

2013

Acknowledgment

First and foremost, thanks to **ALLAH** the most gracious, the most merciful.

I am greatly honored to express my sincere appreciation and gratitude to **Prof. Mohamed Sami El-Shimi**, Professor of Pediatrics, Head of department of pediatrics, Faculty of Medicine, Ain Shams University, for giving me the privilege of working under his meticulous supervision with generous help, guidance, kind encouragement and great fruitful advice.

I find no words by which I can express my extreme thankfulness, deep appreciation, and profound gratitude to **Prof. Sahar Mohamed Ahmed Hassanein**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University for her kind supervision, enthusiastic guidance, constant support, illuminating discussion and valuable time she spent adding precious suggestions and remarks.

My appreciation to **Dr. Soha Mohamed Khafagy**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her great effort to accomplish this work.

I would like to express my deep thanks and appreciation to **Prof.** Safaa Shafik Imam, Professor of pediatrics, Faculty of Medicine, Ain Shams University and **Prof. Mohamed Ahmed Rowisha**, Professor of Pediatrics, Faculty of Medicine, Tanta University for accepting to discuss my thesis.

Last but not least I would like to express my deepest thanks, gratitude and love to my Mother, my NICU family and to everyone for their kindness, trust, unfailing support and much needed encouragement.

Ehab Zahran

Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	V
Introduction	i
Aim of the Work	3
Review of Literature	
Neonatal Jaundice	4
Phototherapy	43
Transcutaneous Bilirubinometer (TcB)	66
Patients and Methods	78
Results	85
Conclusion	128
Recommendations	129
Summary	130
References	132
Arabic summary	

List of Abbreviations

AAP : American Academy of Pediatrics

B/A : Bilirubin/Albumin
BBB : Blood brain barrier
CMV : Cytomegalovirus
CO : Carbon Monoxide
DAT : Direct antibody test

ETCO : End-Tidal Carbon Monoxide Concentration G6PD : Glucose 6-phosphate dehydrogenase deficiency

HDN: Hemolytic disease of Newborn

IAT : Indirect antiglobulin test

JM : Jaundice meter

LED : Light emitting diode

MRP2 : Canalicular multi-drug-resistance- associated

transport protein

NRBCs : Nucleated red blood cellsPCV : Peak Corpuscular VolumePDA : Patent ductus arteriosus

PTH : Phototherapy

RCT: Randomized Controlled Trial

SBRs : Serum bilirubins

TcB : Transcutaneous bilirubin

TORCH. : Toxoplasma, Rubella, Cytomegalovirus, Herpes

simplex, Human immunodeficiency virus

TSB : Total serum bilirubin

UDPGT: Uridine diphosphoglucuronate transferase

UGT1A1 : Uridine diphosphoglucuronosyl transferase 1A1

UTI : Urinary tract infection

List of Tables

Cable No.	Citle	Page No.
Table (1):	Factors that exacerbate physiologiaundice leading to high serum bili levels.	rubin
Table (2):	Criteria that rule out the physic jaundice.	
Table (3):	Etiology of hyperbilirubinemia:	11
Table (4):	ABO blood groups, ABO genotypes corresponding phenotypes, agglutination and isohemagglutinins	tions,
Table (5):	Indications of phototherapy in the infant with HDN	
Table (6):	Guidelines for exchange transfusion neonates with HDN	
Table (7):	Management of Neo Hyperbilirubinemia in Low Birth W Babies Based on Bilirubin Level (mg/dl	•
Table (8):	Factors that increase susceptibilit neuro-toxicity associated hyperbilirubinemia	with
Table (9):	Laboratory Evaluation of the Jaune Infant of 35 or More Weeks' Gestation	
Table (10):	Risk factors for development of some hyperbilirubinemia in infants 35 or weeks' gestation (in approximate ordinary)	more ler of
Table (11). (Criteria to Estimate Clinical Jaundice	24

List of Tables (Cont...)

Cable No.	Citle Page C	No.
Table (12):	Phototherapy delivery	57
Table (13):	Descriptive statistics: Qualitative data	87
Table (14):	Descriptive statistics: Normally distributed quantitative data	88
Table (15):	Descriptive statistics: Skewed quantitative data	89
Table (16):	Correlations among initial serum and transcutaneous bilirubin assays	91
Table (17):	Correlations among first serum and transcutaneous bilirubin assays after PHT	93
Table (18):	Correlations among second serum and transcutaneous bilirubin assays after PHT	95
Table (19):	Correlations among third serum and transcutaneous bilirubin assays after PHT	97
Table (20):	Bland-Altman analysis for agreement between serum and transcutaneous bilirubin assays, and between transcutaneous assays from exposed and covered areas.	99

List of Figures

Figure No.	Citle	Page No.
Figure (1):	Bilirubin Metabolism	6
Figure (2):	Illustration for different blood groups, their surface antigens and serum antib specific for each blood group.	odies
Figure (3):	Marked retrocollis and opisthotonus in a with kernicterus	
Figure (4):	Age-specific total serum bilirubin levels.	21
Figure (5):	Icterometer visual assessment of jaundic	e25
Figure (6):	Hemeoxygenase Pathway	26
Figure (7):	Direct and Indirect Antiglobulin (Coombs' Test)	
Figure (8):	Algorithm for the management of jaund the newborn nursery	
Figure (9):	Exchange transfusion in a jaundiced neo	nate37
Figure (10):	Guidelines for exchange transfusion in in 35 or more weeks' gestation	
Figure (11):	Configuration and structural isomers of a bilirubin in infants undergoing photothera	
Figure (12):	Normal Bilirubin Metabolism and Bili Metabolism during Phototherapy	
Figure (13):	Mechanism of Phototherapy	45
Figure (14):	Important Factors in the Efficacy Phototherapy	,
Figure (15):	A neonate on conventional phototherapy	52
Figure (16):	A neonate using bili-blanket	52

Figure No.	Citle	Page No.
Figure (17):	Double surface phototherapy, a new baby undergoing treatment of new jaundice by double phototherapy.	onatal
Figure (18):	High-intensity gallium nitride light-endiodes (LEDs)	-
Figure (19):	Intensive phototherapy using triple suphototherapy	
Figure (20):	Warmer lined with aluminum foil or material will increase the surface area infant exposed and increase the effica phototherapy.	of the cy of
Figure (21):	Guidelines for phototherapy in hospit infants of 35 or more weeks' gestation	
Figure (22):	Eye patch during phototherapy	61
Figure (23):	Some sites for measurement of TcB (for and sternum).	
Figure (24):	Some instruments used for TcB measure (transcutaneous bilirubinometers)	
Figure (25):	The used Konica Minolta/Air Shield 103, Jaundice Meter	
Figure (26):	Measurement principle of JM-103	75
Figure (27):	An hour specific TcB bilirubin nomogra	m77
Figure (28):	The used Konica Minolta/Air Shield 103, Jaundice Meter	
Figure (29):	The difference between Mean of measurements & TcB readings from coand exposed areas before and phototherapy.	vered after

Figure No.	Citle	Page No.
Figure (30):	Scatter matrix for correlations among is serum bilirubin (TSB0) and transcutar bilirubin assays from exposed (TCBe0) covered (TCBc0) areas.	neous and
Figure (31):	Scatter matrix for correlations among readings after PHT for serum (TSB1) transcutaneous bilirubin assays from exp (TCBe1) and covered (TCBc1) areas	and oosed
Figure (32):	Scatter matrix for correlations among servedings after PHT for serum (TSB2) transcutaneous bilirubin assays from exp (TcB-E-2) and covered (TcB-C2) areas.	and oosed
Figure (33):	Scatter matrix for correlations among readings after PHT for serum (TSB3) transcutaneous bilirubin assays from exp (TCBe3) and covered (TCBc3) areas	and oosed
Figure (34):	Bland-Altman plot for agreement bet initial total serum bilirubin (TSB0) transcutaneous bilirubin assays from expareas (TCBe0)	and oosed
Figure (35):	Bland-Altman plot for agreement bet initial total serum bilirubin (TSB0) transcutaneous bilirubin assays from corareas (TCBc0)	and vered
Figure (36):	Bland-Altman plot for agreement bet initial transcutaneous bilirubin assays covered (TCBc0) and exposed (TC areas.	from
Figure (37):	Mean of initial readings before PTH	103

Figure No.	Citle	Page No.
Figure (38):	Bland-Altman plot for agreement be total serum bilirubin (TSB1) transcutaneous bilirubin assays from ex (TCBe0) areas for first reading after PH	and posed
Figure (39):	Bland-Altman plot for agreement be total serum bilirubin (TSB1) transcutaneous bilirubin assays from co (TCBc1) areas for first reading after PH	and overed
Figure (40):	Bland-Altman plot for agreement be transcutaneous bilirubin assays from co (TCBc1) and exposed (TCBe1) areas for reading after PHT.	vered r first
Figure (41):	Mean of 1st readings after PTH	107
Figure (42):	Bland-Altman plot for agreement be total serum (TSB2) and transcuta bilirubin assays from exposed (TCBe2) for second reading after PHT.	neous areas
Figure (43):	Bland-Altman plot for agreement be total serum (TSB2) and transcuta bilirubin assays from covered (TCBc2) for second reading after PHT.	neous areas
Figure (44):	Bland-Altman plot for agreement be transcutaneous bilirubin assays from co (TCBc2) and exposed (TCBe2) area second reading after PHT	vered s for
Figure (45):	Mean of 2nd readings after PTH	111
Figure (46):	Bland-Altman plot for agreement be total serum (TSB3) and transcuta bilirubin assays from exposed (TCBe3) for third reading after PHT	neous areas

Figure No.	Citle S	₽age No.
Figure (47):	Bland-Altman plot for agreement betweetotal serum (TSB3) and transcutant bilirubin assays from covered (TCBc3) a for third reading after PHT	eous ireas
Figure (48):	Bland-Altman plot for agreement between transcutaneous bilirubin assays from cover (TCBc3) and exposed (TCbc3) areas for treading after PHT.	ered hird
Figure (49):	Mean of 3rd readings after PTH	115

Introduction

eonatal hyperbilirubinemia (NHB) occurs in two-thirds of term and late preterm infants (*Bhutani et al.*, 2000).

Management of NHB has become more challenging because newborn infants are discharged early and unreliable post-discharge follow-up increases the risk of severe NHB and even bilirubin encephalopathy in these infants (*Maisels and Newman*, 1998).

Although TSB measurement is reliable, it is a painful and time-consuming procedure. Bilirubin levels before and during phototherapy (PHT) are measured as TSB and obtained by heelstick or venous blood draws. Noninvasive transcutaneous bilirubin (TcB) estimation using newer bilirubinometer devices has been shown to be easy, safe, accurate, time-effective and painless (*Bhutani et al.*, 2000).

Rubaltelli et al., showed close correlation between TcB measured by BiliCheck, high-performance liquid chromatography and routine laboratory bilirubin measurement independent of race, birth weight and post-natal age (**Rubaltelli et al.**, 2001).

Although TcB correlates well with TSB, bilirubin in the skin exposed to PHT is modified and significantly affects TcB. Thus, TcB cannot be used as a surrogate measure of TSB when the infant is receiving PHT (*Varvarigou et al.*, 2009).

Preliminary studies suggest that by covering the skin during PHT, more accurate approximations of serum bilirubin can be made with TcB measurements (*Ozkan et al.*, 2003).

Aim of the Work

The aim of the study was to evaluate the accuracy of transcutaneous bilirubin measurement from the covered and uncovered skin during and after phototherapy treatment and compare these values with total serum bilirubin performed at the same time.