Relation Between Timed Up and Go Test and Femoral Neck Bone Mineral Density

Thesis

Submitted for partial Fulfillment of the Master Degree in Geriatric Medicine and gerontology

Presented by

Khalid El-Sayed Ismail El-Sorady

M.B.B.Ch

Ain Shams University

Under Supervision of

Prof. DR. Ahmed Kamel Mortagy

Professor of Geriatrics and gerontology Faculty of Medicine – Ain Shams University

Dr. Shereen Moustafa Mousa

Assistant Professor of Geriatrics and gerontology Faculty of Medicine-Ain Shams University

Dr. Doha Rasheedy Ali

Lecturer of Geriatrics and gerontology Faculty of Medicine-Ain Shams University

Faculty of Medicine
Ain Shams University
2013

Acknowledgment

First and for most, thanks to **ALLAH** "The Most Merciful"

In all gratitude, I extend my most sincere thanks to **Prof. DR.** Ahmed Kamel Mortagy, Professor of Geriatrics and gerontology - Faculty of Medicine – Ain Shams University, for honoring me with his supervision of this thesis. His help, guidance, and valuable advices were a great encouragement throughout the work.

Sincere appreciation to **Dr. Shereen Moustafa Mousa**, Assistant Professor of Geriatrics and gerontology-Faculty of Medicine-Ain Shams University, for her valuable help and advice.

Profound thanks to **Dr. Doha Rasheedy Ali,** Lecturer of Geriatrics and gerontology-Faculty of Medicine-Ain Shams University, for her supervision.

Contents

Title	Page
• Introduction	1
• Aim of the study	3
• Review of Literature:	4
➤ Bone Mineral Density	4
Falls and related consequences in elde	erly. 15
> The effect of muscle strength, mass	and
balance on BMD	25
> Fracture risk assessment tools	31
• Subjects and Methods	34
• Results	38
• Discussion	56
• Conclusion	66
• Recommendations	67
• Summary	68
• References	
• Appendix	92
• Arabic Summary	

List of Tables

Tab. No	Title	Page
Table (1):	Demographic characteristics of the studied	
	participants as regards studied variables	38
Table (2):	Comparison between cases and controls as	
	regards studied variables	39
Table (3):	Comparison between cases and controls as	
	regards their fracture risk by FRAX	
	calculations	41
Table (4):	Comparison between cases and controls as	
	regards their fracture risk by Garvan	
	calculations using femoral BMD	42
Table (5):	Comparison between cases and controls as	
	regards their fracture risk Garvan	
	calculations using lumbar BMD	42
Table (6):	Comparison between cases and controls as	
	regards presence of femoral osteoporosis	43
Table (7):	Comparison between cases and controls as	
— 11 (0)	regards presence of Lumbar osteoporosis	44
Table (8):	Comparison between male, female cases and	1.0
T 11 (0)	controls as regards studied variables	46
Table (9):	Comparison between male, female cases and	
	controls as regards their FRAX	45
T 11 (10)	calculations	47
1 able (10):	Comparison between male, female cases and	
	controls as regards their Garvan	40
Table (11).	calculations using femoral BMD	48
Table (11):	Comparison between male, female cases and	
	controls as regards their Garvan calculations using lumbar BMD	49
Tabla (12).	Comparison between male, female cases and	4)
1 abic (12).	controls as regards presence of osteoporosis	
	(Femoral)	50
Table (13):	Comparison between male, female cases and	50
14210 (10).	controls as regards presence of lumbar	
	osteoporosis	52
Table (14):	Correlation between TUG duration and	~-
	femoral and lumber BMD, T-score and Z-	
	score among cases	54
Table (15):	: Correlation between TUG duration and	
,	fracture risk (FRAX and Garvan) among	
	cases	55

List of Figures

Fig. No	Title	Page
Fig (1):	The differences in BMD at femoral neck between	
	the two groups	40
Fig (2):	The differences in BMD at lumbar spine between	
	the two groups	41
Fig (3):	Comparison between cases and controls as	
	regards presence of femoral osteoporosis	44
Fig (4):	Comparison between cases and controls as	
	regards presence of Lumbar osteoporosis	45
Fig (5):	Comparison between male, female cases and	
	controls as regards presence of osteoporosis	=1
F ! (6)	(Femoral)	51
Fig (6):	Comparison between male, female cases and	
	controls as regards presence of lumbar	5 2
	osteoporosis	53

List of Abbreviations

BMC Bone Mineral Content BMD Bone Mineral Density

BMI Body Mass Index

CGA Comprehensive geriatric assessment

COLIal gene Collagen I (COLI) Al gene

CRP C - reactive protein CT Cortical Thickness

DEXA Dual Energy X-ray Absorptiometry

FRAX World Health Organization Fracture Risk

Assessment tool

GCs Glucocorticosteroids

IL1 Interleukin-1

IGF-1 Insulin growth factor -1

L2-4 Lumbar spine

MRI Magnetic Resonant Imaging

NOF National Osteoporosis Foundation

OPG Osteoprotogerin

PTH Para Thyroid Hormone

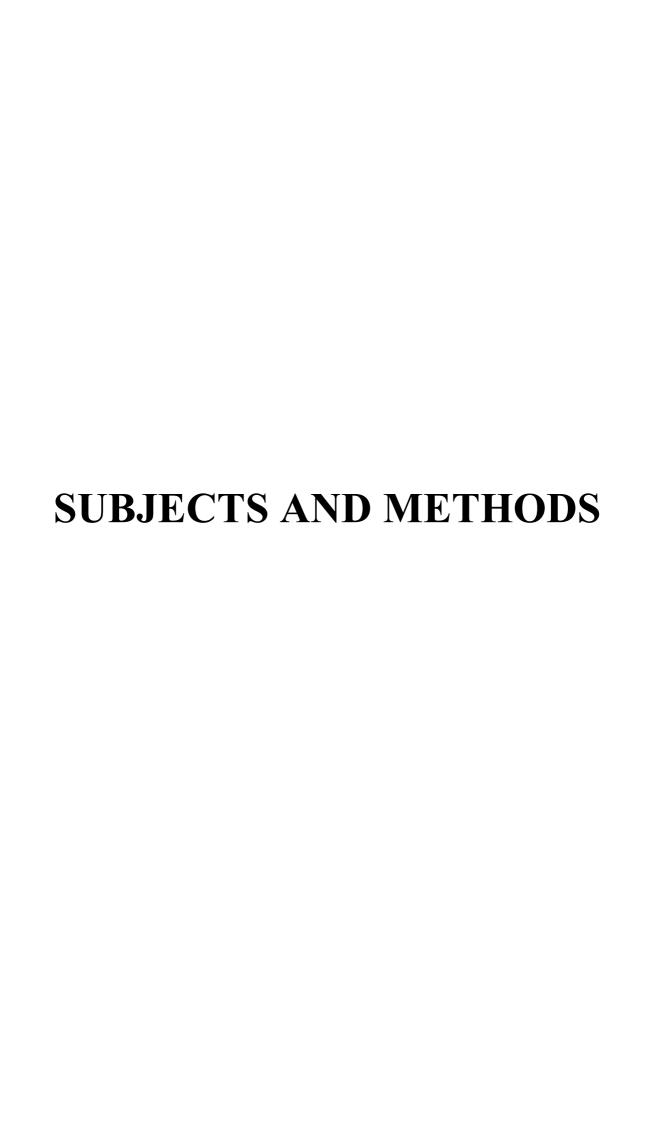
QCT Quantitative Computed Tomography

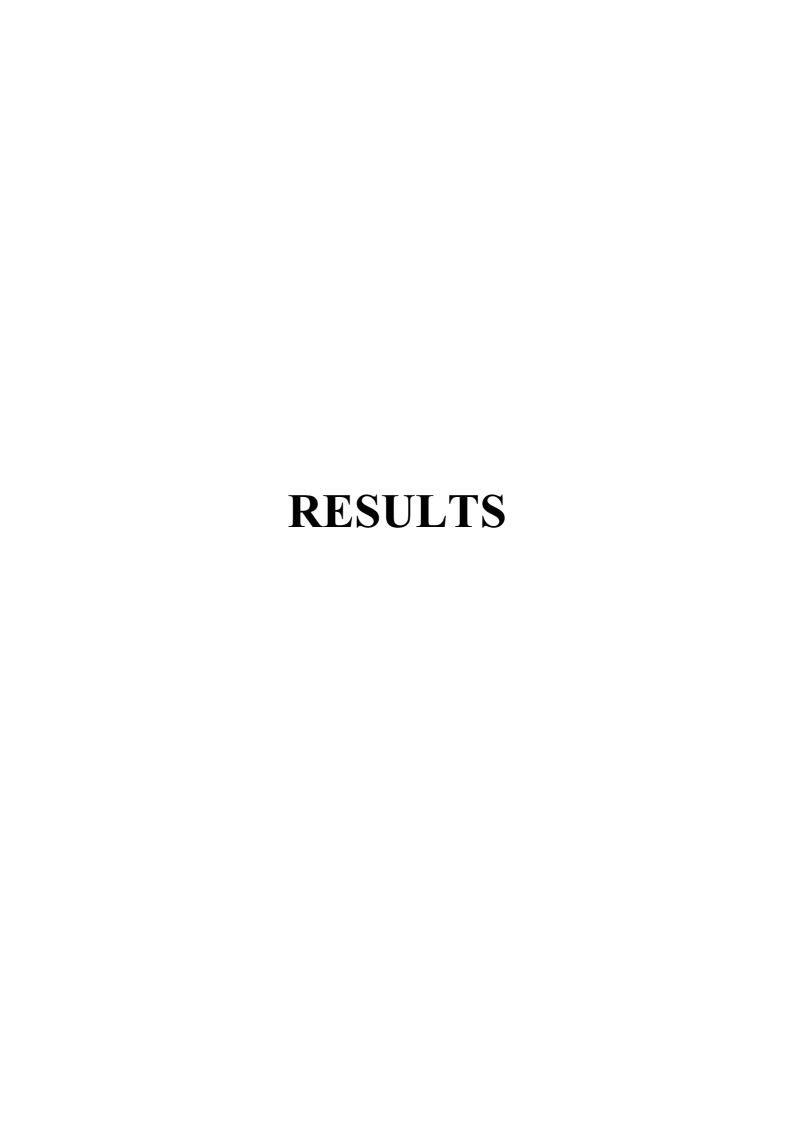
QUS Quantitative UltraSound

RANK Receptor activation of NF-_kB

RANKL Receptor activation of NF-_kB ligand

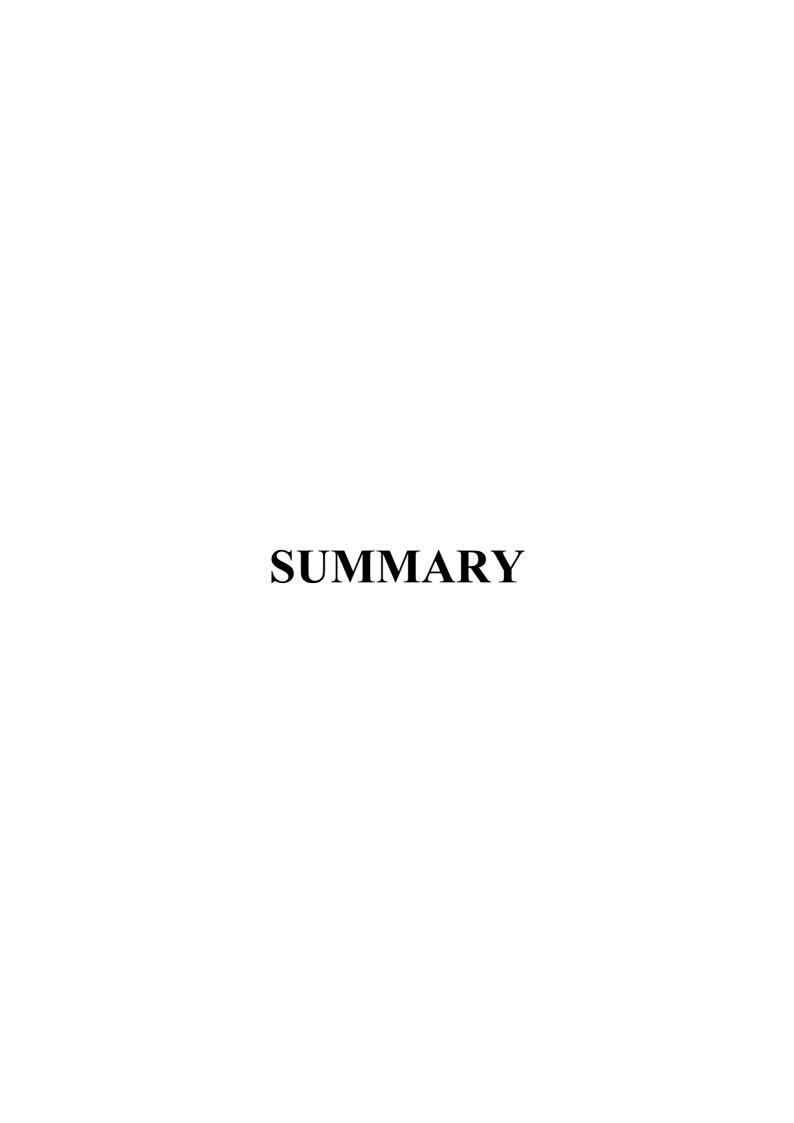
SD Standard Deviation TCS Timed Chair Stands


TNF Tumour Necrosis Factor TUG Timed Up and Go Test


WHO World Health Organization

Aim of the study

Review of Literature



RECOMMENDATIONS

