Recent concepts of intra-operative fluid management in Pediatrics and neonates

Essay

Submitted for partial fulfillment of master degree In anesthesia

${\cal B}y$ Ibrahim Mohamed Mohamed Attia M.B.B.CH

Under Supervision of

Prof. Dr. Bahaa ALdin Ewees Hassan Ali Professor of Anesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Dr. Ahmed Nagah EL-Shaer

Assistant Professor of Anesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Dr. Mahmoud Hassan Mohamed Hassan

Lecturer of Anesthesia and Intensive Care Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2013

Acknowledgment

First of all, all gratitude is due to Allah for this work, until it has reached its end, as part of his generous help throughout my life.

I can hardly find the words to express my gratitude to **Prof.Dr.Bahaa Aldin Ewees Hassan Ali,** professor of anesthesia and intensive care, faculty of Medicine, Ain Shams University, for his close supervision, continuous help and encouragement throughout the whole work. It is agreat honor to work under his guidance and supervision.

I'm also indebted to **Dr.Ahmed Nagah EL-Shaer,** assistant professor of anesthesia and intensive care, faculty of medicine, Ain Shams University, for his guidance and continuous assistance.

I'd like also to express my sincere appreciation and gratitude to **Dr. Mahmoud Hassan Mohamed Hassan** Lecturer of anesthesia and intensive care, faculty of medicine, Ain Shams University, for his continuous support, close supervision and tremendous effort he has done in the meticulous revision of the whole work.

Abrahim Mohamed Attia

List of Contents

Pa	ige
List of Abbreviations	i
List of tables	. iv
List of figures	v
Introduction	1
Body fluid content in pediatrics and neonates	4
▶ Body fluid composition	4
▶ Renal maturation	8
▶ Developmental cardiovascular changes	9
Intra-operative fluid requirements in pediatrics and	
neonates	10
▶ Perioperative Fluid Requirements	10
► Maintenance requirements	12
➤ Sources of water loss	14
► Types of fluids for pediatric patients	16
I. Crystalloid solutions	16
II. Colloids solutions	21
Intra-operative fluid management in pediatrics and	22
neonates	
For elective surgeries	
► For emergency surgeries	54
New preparation of intra-operative fluid management	<i>(</i> 2
in pediatrics and neonates	
Summary	
References	12
Arshie summery	

List of Abbreviations

ACEAngiotensin converting enzyme

ADHAntidiuretic hormone

ALTAlanine amino transferase

ARFAcute renal failure

ASAAmerican Society of Anesthesiologists

ASTAsparate amino transferase

Bl.prBlood pressure

BWBody weight

COPCardiac output

CSFCerebro-spinal fluid

CPPCerebral perfusion pressure

CVPCerebral venous pressure

CVSCardiovascular system

(**d**)**D**alton

D₅W5% dextrose

ECFExtra-cellular fluid

ECHO Echocardiography

ECVExtra-cellular volume

EDVEnd diastolic volume

EFEjection fraction

ELBWExtremely low birth weight

FFPFresh frozen plasma

GFRGlomerular filtration rate

HES**H**ydroxyethyl starch

HFHeart failure

Hg**H**emoglobin

HMEHeat and moisture exchange filter

HPA axis Hypothalamic-pituitary-adrenal axis

HRHeart rate

ICFIntra-cellular fluid

ICPIntra-cerebral pressure

IVIntra-venous

IVFIntravascular fluid

LRLactated Ringer "Ringer's lactate"

MWMolecular weight

NHSNational Health Service

NPONil per os

NSNormal saline "0.9% NaCl"

OR**O**perating room

ORT**O**ral rehydration therapy

PAOPPulmonary artery occlusion pressure

PPFPlasma protein fraction

PTTPartial thromboplastin time

RASReticular activating system

RFRenal failure

RPPRenal perfusion pressure

SVStroke volume

RVEDV ..Right ventricular end diastolic volume

TBWTotal body water

UKUnited Kingdom

List of Tables

Table	Subject				
1	Relation of body fluids to age				
2	Daily maintenance fluids according to child's weight	13			
3	Water calculation for healthy children per day and per hour	14			
4	composition of different crystalloid	17			
5	Properties of colloid fluids that are commercially available	22			
6	Constituents of the two preparations of gelatin	28			
7	Specific intravenous solutions used for pediatric patients	29			
8	Hourly "4-2-1 rule" and daily maintenance fluids according to child's weight	35			
9	Fasting guidelines for elective surgery	37			
10	Guidelines for fluid administration of balanced salt solution in children according to the age and to the severity of tissue trauma				
11	Composition and clinical use of LR, polyionique B66 and polyionique B26	42			

12	Assessment tool to determine dehydration severity	47			
13	Formulas for Estimating Pediatric Resuscitation Needs	60			
14	Criteria for adequate fluid resuscitation				

List of Figures

Figure	Subject			
1	Winters diagram with the subdivision of TBW, ICF and ECF as a function of age	4		
2	Distribution of ultra-filtrate across the capillary membrane	7		
3	Some of the advantages (A) and disadvantages (B) of various colloid and crystalloid solutions	30		
4	Comparison of energy expenditure in basal and ideal state	34		

Introduction

Perioperative fluid management in pediatrics has been the subject of many controversies in recent years, but fluid management in the neonatal period has not been considered in most reviews and guidelines. The literature regarding neonatal fluid management mainly appears in the pediatric textbooks and few recent data are available, except for resuscitation and fluid loading during shock and major surgery. In the context of anesthesia, many neonates requiring surgery within the first month of life have organ malformation and/or dysfunction (Murat et al., 2010).

It has been more than 50 yr since the landmark article in which Holliday and Segar proposed the rate and composition of parenteral maintenance fluids for hospitalized children. Much of our practice of fluid administration in the perioperative period is based on this article. The glucose, electrolyte, and intravascular volume requirements of the pediatric surgical patient may be quite different than the original population described, and consequently, use of traditional hypotonic fluids proposed by Holliday and Segar may cause complications, such as hyperglycemia and hyponatremia, in the postoperative surgical patient. There is significant controversy regarding the

choice of isotonic versus hypotonic fluids in the postoperative period (Bailey et al., 2010).

A volume replacement therapy compensates a reduced intravascular volume to stabilize and maintain hemodynamics and vital signs. For this therapy, a physiologically-based solution comprising both, osmotic and colloid osmotic components, should be administered. The basic requirement for a sufficient fluid replacement and volume resuscitation therapy in children are the profound and special knowledge of the physiological and pathophysiological interactions in water balance and electrolyte metabolism in childhood, pharmacology of the applied solutions and the adequate monitoring of this fluid and volume replacement therapy. Wrong dosages and side effects are reasons for a negative postoperative outcome in children (Winter and Sablotzki, 2010).

Aim of the Work

to highlight the basic and advanced means of intraoperative fluid management in pediatrics and neonates for proper postoperative outcome in pediatrics and neonates.

Chapter (1)

Physiological considerations:

Neonates are not just small adults, major physiological changes occur within the first days and months of life. They mainly concern body composition, renal function and changes in the cardiovascular system (Murat et al., 2010).

Body fluid composition

Water makes up 50-75 % of the body mass. The most important determinants of the wide range in water content are age and gender: a. the water content of a newborn, an adolescent and an elderly man are approximately 75, 60 and 50 %; b. after puberty males generally have 2 to 10 % higher water content than females (**Figure 1**) (**Ruth and Wassner, 2006**).

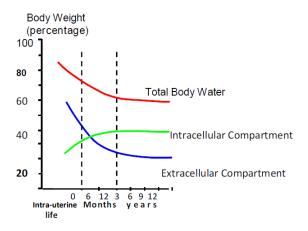


Figure (1): Winters diagram with the subdivision of TBW, ICF and ECF as a function of age (Ruth and Wassner, 2006).

Throughout fetal life and during the first 2 years of life the distribution of body fluid undergoes a gradual but significant change. TBW represents as much as 80% of body weight in premature infants, 78% in full-term newborns and 65% in infants of 12 months of age compared to 60% in adults show in table(1) (Murat et al., 2010).

Table (1): Relation of body fluids to age (Murat et al., 2010)

	Premature	Full- term	1 yr.	3 yr.	9 yr.	Adult
Body weight BW(kg)	1.5	3	10	15	30	70
Body surface area BSA(m2)	0.15	0.2	0.5	0.6	1	1.7
BSA/BW	0.1	0.07	0.05	0.04	0.03	0.02
TBW(%BW)	80	78	65	60	-	-
ECF(% BW)	50	45	25	20	-	-
ICF (% BW)	30	33	40	40	-	-

Body fluid compartment

These age-related changes in TBW are mainly reflect changes in ECF with growth. As the body cells proliferate and organ development progresses, the ECF volume decreases proportionally. It represents 50% of BW in premature infants, 45% in full-term newborns and 25% in infants of 12 months of age compared to 20% in adults. The ICF compartment increases only moderately during the first year of life, representing 33%