Surgical Treatment of Nonspecific Spinal Infections

Essay

Submitted for partial fulfillment of the master degree of in Orthopedic Surgery

By

Mahmoud Ibrahim Morshed Ibrahim (M. B., B.Ch)
Ain-Shams University

Supervised by

Prof. Dr. Mohamed Ahmed Maziad

Professor of Orthopedic Surgery Faculty of Medicine Ain-Shams University

Dr. Ahmed Mohamed Morsi

Lecturer of Orthopedic Surgery Faculty of Medicine Ain-Shams University

> Faculty of Medicine Ain Shams University 2013

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I would like to express my appreciation to **Prof. Dr. Mohamed Ahmed Maziad** professor of orthopedic surgery, faculty of medicine, Ain Shams university, for his kind and gentle guidance.

I would like to express my appreciation to **Dr.**Ahmed Mohamed Morsi lecturer of orthopedic surgery, faculty of medicine, Ain Shams university, for his close scrutiny, ideas and valuable discussions throughout the process of writing the essay.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Mahmoud Ibrahim Morshed Ibrahim

Contents

List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction and Aim of the Work	1
Anatomy of The Vertebral Column	4
Pathogenesis Diagnosis	35
Conservative Treatment	63
Surgical Treatment	72
Summary and Conclusion	117
References	120
Arabic Summary	

List of Abbreviations

Abx : Antibiotics

ALL : Anterior longitudinal ligaments

ARM : Arteria radicularis magna
ASA : Anterior spinal artery
BMA : Bone Marrow Aspirate

BMPs : Bone Morphogenic Proteins

CBC : Complete blood count;
CrCl : Creatinine clearance
CRP : C-reactive protein

CT : Computed tomography

Cx : Cultures

DRG : Dorsal root ganglia

DVT : Deep Venous ThrombosisESR : Erythrocyte sedimentation rate

F-18 FDG PET: Positron emission tomography with fluorine-

18 fluorodeoxyglucose

FDG : Fluoro-2- deoxy-D- glucose

FSU : Fixed spinal unit

GRC : Gray rami communicants

HIV : Human immunodeficiency virusIAR : Instantaneous axis of rotationMRI : Magnetic resonance imaging

MSU : Multilevel spinal NZ : Neutral zone

PCA : Morphine patient-controlled analgesia

PET SCAN: Positron emission tomography
PLL: Posterior longitudinal ligaments

PPD : Purified protein derivative

PRS : Penicillinase-resistant synthetic

PVA : Paravertebral abscess SEA : Spinal epidural abscess

List of Abbreviations (Cont.)

SI : Spinal infections

SPECT : Single photon emission computed tomography

SUV : Standard uptake valueSVN : The sinuvertebral nerves

TB : Tuberculosis

TED hose : Thrombo-embolic deterrant hose TMP-SMX : Trimethoprim-sulfamethoxazole.

List of Tables

Table	Title	Page
1	Spinal infections and their location	43
2	Suspected pathogens according to predisposing conditions	50
3	Neuroimaging findings in patients with spinal infection with different imaging modalities	51
4	MR imaging findings of tuberculous spondylitis and pyogenic spondylitis.	57
5	Overview of sensitivity and specificity	60
6	Differentiating clinical, laboratory and imaging findings in spinal infections resulting from bacterial, tuberculous or brucellar infections	61
7	Suggested duration of antibiotic treatment in spinal infections	67
8	Suggested antimicrobial therapy for organisms in spinal infections	70
9	Showing some instrumentations used historically in spinal fusion	79
10	Comparison between different approaches in regard to the complications	93
11	Properties of types of autologous bone graft	105
12	Bioactive strategies	112

List of Figures

Fig. Title		Daga
Fig.	Titte	Page
1	Diagram showing the various forms of	7
	vertebral column morphology	
2	Schematic representation of the main	8
	structural features of an intervertebral disc	
3	Ligaments of vertebral Column	9
4	Median sagittal section through the lumbar	10
	region of the vertebral column	
5	Arterial supply spinal cord	13
6	Internal vertebral venous plexuses	14
7	Transverse view of the lumbar	17
	intervertebral disc showing nerve supply	
8	Diagrams show nerve root in relation to	19
	foraminal canal	
9	Instantaneous axis of rotation of C1 under	22
	axial torsion	
10	Instantaneous axes of rotation for the	22
	thoracic vertebrae	
11	Instantaneous axes of rotation for the	23
	middle and lower cervical vertebrae	
12	Instantaneous axes of rotation for the	23
	lumbar vertebrae	
13	A spinal pathology can shift and enlarge	24
	the region in which the instantaneous axes	
	of rotation are located	
14	The mobile segment	25
15	Forces and movements of the mobile	27
	segment in three-dimensional space	
16	The four primary forces along the spinal	28
	column	
17	Diagnostic algorithm for spinal infections	46

List of Figures (Cont.)

List of Figures (cont.)		
Fig.	Title	Page
18	Algorithm for the intraoperative removal	49
	of tissue samples	
19	Tuberculous spondylitis MRI A,B,C,D,E	55
20	Pyogenic spondylitis MRI A,B,C,D,E	56
21	Fluorine-18 fluorodeoxyglucose PET	60
	(FDG PET)	
22	Antimicrobial treatment in pyogenic	69
	spontaneous spondylodiscitis	
23	Harrington distraction rod and	80
	compression rod	
24	Luque Segmental Spinal Instrumentation	80
25	Steffee vsp plate	81
26	Comparison between conservative surgery	83
	and instrumentation surgery in regard to	
	complications	
27	A 54-year-old man treated with	84
	corpectomy at C5 and C6, strut grafting	
	and anterior instrumentation	
28	Diagram showing different implants used	89
	in spinal fusion	
29	A metal cage filled with bone graft is	90
	placed between lumbar vertebrae	
30	Comparison between different approaches	94
	in regard to complications	
31	Cervical non-specific spondylodiscitis in	102
	cervical vertebral bodies 3/4 and	
	postoperative native radiological follow-	
	up with properly positioned bone span and	
	plate	

List of Figures (Cont.)

Fig.	Title	Page
32	Three month postoperative native radiological follow-up after bilateral dorsoventral spondylodesis of thoracic vertebral bodies 2 and 3	102
33	The use of a rigid implant, whether a spacer or a cantilever fixation device, in conjunction with autograft or an osteoconductive bone substitute	111

Introduction

Spinal infections (SI) is a broad entity encompass a spectrum of distinct disease entities such as septic discitis, vertebral osteomyelitis, and epidural abscess, and are caused by a wide variety of organisms. Vertebral osteomyelitis represents approximately 2-7% of all cases of osteomyelitis⁽¹⁾.

Spinal infections is classified to specific and nonspecific (pyogenic), specific SI caused by TB, brucella, Syphilis and other infections - which is not our concern in this essay- while the nonspecific SI caused by many bacterial pathogens. Staphylococcus aureus remains the most common bacterial agent of pyogenic infections. In addition to TB, the HIV pandemic has caused a rise in cases due to nontuberculous mycobacteria and fungi (2).

In recent years, a rise in the incidence of pyogenic and nonpyogenic SI has been reported as a consequence of an increasing number of individuals with predisposing factors such as advanced age, diabetes mellitus, chronic renal or liver disease, intravenous drug use, HIV infection, long-term steroid use, malignancy, chemotherapy, severe trauma⁽³⁾.

Diagnosis of Spinal infections is based on clinical, laboratory investigations and imaging. Suspected infections considered-in absence of microbiological or histopathological confirmation-when suggestive clinical features, appropriate MRI changes and elevated inflammatory markers were found and a positive clinical response to antimicrobial therapy was obtained⁽⁴⁾.

The principles of conservative treatment are to establish an accurate microbiological diagnosis, treat with appropriate antibiotics, immobilize the spine, and closely monitor for spinal instability and neurological deterioration⁽⁵⁾.

Introduction and Aim of The Eassy

Some patients present late with failure of conservative treatment due to bacterial resistance to antibiotics, neurological complications or unfavourable general condition for chemotherapy and on them we turn to surgical management⁽⁶⁾.

The purpose of surgical treatment is to obtain multiple intraoperative cultures of bone and soft tissue, perform a thorough debridement of infected tissue and decompression of neural structures, and reconstruct the unstable spinal column with bone graft with or without concomitant instrumentation⁽⁷⁾.

Aim of the Essay

This study aims to stress on:

- 1. The importance of early diagnosis of spinal infections,
- 2. Early surgical intervention when indicated,
- 3. The recent trends in surgical management,
- 4. The overall role of surgery, and
- 5. The appropriate duration of antimicrobial treatment .

Anatomy of The Vertebral Column

General Characteristics:

The vertebral column usually consists of 33 vertebrae: 7 cervical, 12 thoracic, and 5 lumbar followed by the sacrum (5 fused sacral vertebrae) and the coccyx (4 frequently fused coccygeal vertebrae).

The cervical spine consists of the first 7 vertebrae in the spinal column. Typically these vertebrae are small and possess a foramen on the transverse process for the vertebral artery. The thoracic spine consists of the next 12 vertebrae and is stabilized by the attached rib cage and intercostal musculature. The lumbar spine consists of a mobile segment of 5 vertebrae, located between the relatively immobile segments of the thoracic and sacral segments. The lumbar vertebrae are particularly large and heavy in comparison with the cervical and thoracic vertebrae. The bodies are wider and have shorter and heavier pedicles, and the transverse processes project somewhat more laterally and ventrally than the other spinal segments. The laminae are shorter vertically than the bodies and are bridged by strong ligaments. The spinal processes are broader and stronger than those in the thoracic and cervical spine.

The primary curvatures are located in the thoracic and sacral regions and the secondary curvatures are located in the cervical and lumbar regions.

Consist of

- 1- *Bones:* (body, vertebral arch, vertebral arch, vertebral processes, costal facets, foramina).
- 2- Soft tissues: (disk, ligaments, muscles, blood supply).
- 3- Neural elements: (Spinal cord and Associated Structures).

Bones

Typical vertebra: (Fig.1)

Consists of a body and a vertebral arch with several processes for muscular and articular attachments.

Body:

Is a short cylinder, and is separated and also bound together by the intervertebral disks.

Has costal facets on its side, which architecture with the heads of the corresponding and subjacent ribs.

The vertebral arch:

Consists of a pair of pedicles laterally and a pair of laminae posteriorly.

Gives rise to seven processes: four articular, two transverse, and one spinous.

Vertebral processes:

The spinous process

Projects posteriorly from the vertebral arch.

The transverse processes

Project on each side from the junctions of the pedicles and lamina articulate with the tubercles of ribs 1 to 10 in the thoracic region.

Articular processes (facets)

These are two superior and two inferior projections from the junction of the pedicles and laminae.