

Ain Shams University Faculty of Engineering Electronics and Communications Engineering Department

A Novel Handover Mechanism between Macro cell and Femtocell for LTE based Networks

A Thesis

Submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

Submitted by

Mohamed Emam Mohamed Fathy Emam

B.Sc. of Electrical Engineering (Electronics and Communications Engineering)
Ain Shams University, 2007

Supervised By

Prof. Dr. Adel Ezzat Mohamed EL-Hennway

Electronics and Communications Engineering Department Faculty of Engineering Ain Shams University

Dr. Mirette Mahmoud Sadek

Electronics and Communications Engineering Department Faculty of Engineering Ain Shams University

Cairo 2013

Ain Shams University
Faculty of Engineering
Electronics and Communications Engineering Department

Examiners Committee

Name: Mohamed Emam Mohamed Fathy

Thesis: A Novel Handover Mechanism between Macrocell and Femtocell for LTE based Networks

Degree: Master of Science

Title, Name and Affiliation	Signature
1- Prof. Dr. Magdi M.S. EL-Soudani Electrical and Communications Engineering Department Cairo University, Cairo, Egypt	•••••••••••••••••••••••••••••••••••••••
2- Prof. Dr. Salwa Hussein El-Ramly Electrical and Communications Engineering Department Ain Shams University, Cairo, Egypt	
3- Prof. Dr. Adel Ezzat Mohamed EL-Hennway Electrical and Communications Engineering Department Ain Shams University, Cairo, Egypt	······································

الدكرالدالا هوابحي القيوم

لاَنَانُهُذُهُ مُنِيَنَةٌ وَلَانَوْ مُرَّلَهُ مَافِي الشَّمَوَاتِ وَمَا فِي الاَرْضِ مَن ذَا الَّذِي يَشْفَعُ عِنْدَهُ اِلاَياذِ نِهُ يَعِيْكُمُ مَا مِيْنَ اَيْدِيْمِ مُو مَا خَلْفَهُ مُو لَا يُحِيْطُونَ بِشَى ءِٰمِنْ عِلْمِهُ إِلاَئِمَا اسْتَاءً وَنِيعَ كُنْنِ نَيْهُ الشِّمَوَاتِ وَالاَرْضَ وَلَا يَوْدُهُ أُحِفْظُهُمَا وَهُوَ الْهِكِنُ الْعَظِيمُ

Statement

This thesis is submitted to Ain Shams University in partial fulfillment of the degree of Master of Science in Electrical Engineering.

The work in this thesis was carried out by the author at the department of Electronics and Communications Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a qualification at any other university or institute.

Name	: Mohamed Emam Mohamed Fathy
Signature	:

Date :

Curriculum Vitae

Name of the researcher Mohamed Emam Mohamed Fathy

Date of Birth 13rd of August 1985

Place of Birth Cairo, Egypt

First University Degree B.Sc. in Electrical Engineering,

Electronics and Communications Department,

Faculty of Engineering, Ain-Shams University.

Date of Degree June 2007

Current Job RF Engineer at Ericsson

Abstract

With the deployment of the Home eNodeB, the handover between femtocell and 3GPP macrocell networks is becoming more important in LTE based networks. Thousands of femtocells within a macrocell area will create a large neighbor cell list and an interference problem. Thus modifications of handover procedure and algorithm for existing networks are needed to improve the performance of both the femtocell and LTE networks

The novel handover mechanism proposed in this thesis will have a better performance in the rate of decreasing the signaling load on the core network by making the node of HeNB GW a more intelligent node. Introducing the concept of FFR (fractional frequency reuse) in our proposition will improve the interference problem between the macrocell and its neighbors of femtocells. This will enhance the data throughput. Also the concepts of ANR (automatic neighbor relations) and DNL (dynamic neighbor list) and their roles in solving the problem of defining the neighbors for the macrocell, taking into consideration the limited number of neighbors that should be defined for each macrocell. So this will give the femtocell the advantage of dynamism On the other hand, introducing a simple analytical model to compare between the standard architecture and proposed one. This gives a proof of the importance of the proposed architecture and how the introducing of both (Intelligent HeNB GW) and (X₂ Handover instead of S₁ Handover) will enhance in performance improvement. Finally, a detailed and optimized algorithm for the handover scenario from macrocell to femtocell has been showed.

Acknowledgment

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for the strengths and his blessing in completing this thesis.

Special appreciation goes to my supervisor, Prof. Dr Adel Ezzat Mohamed El-Hennawy, Electronics and Communications Department, Ain Shams University, for his supervision, encouragement and constant support. His invaluable help of constructive comments and suggestions have contributed to the success of this research.

I express my deepest gratitude and thanks to Dr. Mirette Mahmoud Sadek, Assistant Professor, Electronics and Communications Department, Ain Shams University, for her continuous supervision, support and actually she is behind all analytical, technical and even spiritual actions throughout this work. Without her encouragement, the thesis could not reach this level.

Also my deepest gratitude and sincerest thanks to my beloved parents and brother for their endless love, prayers and encouragement

Also, I will not forget my deceased sister Hanan, she always encouraged me. Really I miss her and I wish to be with us now to see how her support and interest with me, reach me to this level. I ask Allah for her to be in Paradise now.

Last, but not least thanks, to my fiancée Amira, who did all her best for me and always encourages for further progress.

Contents

		Abstract	VI
		Acknowledgment	VII
		List of Figures	XIII
		List of Tables.	XVIII
		List of Abbreviations	XIX
		List of Symbols and Notations.	XXV
Cl	hapter1	Introduction	1
Chapter 2		Orthogonal Frequency Division Multiplexing (OFDM)	7
2.1		Introduction	7
2.2		Orthogonal Multiplexing Principle	8
2.3		OFDM Basics	8
2.4		OFDM implementation using IFFT/FFT processing	13
2.5		Channel Fading.	16
	2.5.1.	Defining the problem	16
	2.5.2.	The solution of the problem in OFDM usage	18
2.6		Delay spread and the use of cyclic prefix	19
	2.6.1.	Delay spread problem.	19
	2.6.2.	Cyclic Prefix Insertion.	20
2.7		Properties of OFDM	22
	2.7.1.	Spectrum and Performance.	22
	2.7.2.	Bit Error Rate Performance.	23
	2.7.3.	Peak to Average Power Ratio problem	24
	2.7.4.	Time Synchronization	25
	2.7.5.	Frequency synchronization	26

2.8		OFDMA	26
2.9		OFDM applications	27
2.10		Conclusion.	27
Ch	apter 3	LTE Overview	28
3.1		LTE drivers and philosophy	28
3.2		Network Architecture	29
	3.2.1	The Core Network.	30
	3.2.2	The Access Network	32
3.3		The E-UTRAN Network Interfaces S1-Interface	34
	3.3.1.	Protocol Structure over S1	34
	3.3.1.1.	Control Plane.	34
	3.3.1.2.	User Plane	35
	3.3.2.	Mobility over S1	35
3.4		The E-UTRAN Network Interfaces X2-Interface:	37
	3.4.1.	Protocol Structure over X2	37
	3.4.2.	Mobility over X2	38
3.5		LTE Radio Access.	39
	3.5.1.	Transmission schemes: downlink OFDM and uplink SC-	39
	3.5.2.	FDMA	40
	3.5.2.1.	Downlink scheduling.	40
	3.5.2.2.	Uplink scheduling	41
	3.5.2.3.	Inter-cell interference coordination	42
	3.5.3.	Hybrid ARQ with soft combining.	42
	3.5.4.	Multiple antenna support	43
	3.5.5.	Multicast and broadcast support	43
	3.5.6.	Spectrum flexibility	43

	3.5.6.1.	Flexibility in duplex arrangement	44
	3.5.6.2.	Flexibility in frequency-band-of-operation	44
	3.5.6.3.	Bandwidth flexibility	44
3.6		LTE protocol architecture	45
	3.6.1.	Logical channels and transport channels	46
3.7		LTE Physical layer	48
	3.7.1.	Frame Types	48
	3.7.2.	The Physical Channels	48
	3.7.3.	Mapping between transport channels and physical	49
	3.7.4.	Channels	50
	3.7.4.1.	Downlink Transport Channel processing.	50
	3.7.4.1.1.	CRC insertion	50
	3.7.4.1.2.	Channel coding	51
	3.7.4.1.3.	Physical-layer hybrid-ARQ functionality	51
	3.7.4.1.4.	Bit-level scrambling.	52
	3.7.4.1.5.	Data modulation	52
	3.7.4.1.6.	Resource-block mapping	53
	3.7.4.2.	Uplink Transport Channel processing.	54
3.8		Conclusion	55

Ch	apter 4	Femtocells Technology	56
4.1		Introduction	56
	4.1.2.	FAP Technologies.	57
	4.1.3.	FAP Classification.	57
	4.1.4.	Why is Femtocell Important?	57
4.2		Improvement of Indoor Coverage	59
	4.2.1.	Indoor Base Stations	60
	4.2.1.1.	Picocells	60
	4.2.1.2.	Femtocells	61
	4.2.1.3.	Differences between Picocells and Femtocells	62
4.3		Femtocell Network Architecture	63
	4.3.1.	Legacy Iub over IP	64
	4.3.2.	Concentrator	65
	4.3.3.	Generic Access Network (GAN)-Based RAN Gateway	65
	4.3.4.	IMS and SIP	66
4.4		TECHNICAL CHALLENGES	67
4.5		Evolution to IMS/HSPA+ LTE	68
	4.5.1.	Femtocells needed for LTE.	70
	4.5.2.	LTE femtocells for hotspots	71
4.6		Conclusion	71

Chapter 5 5.1		A Novel Handover Mechanism between Macrocells and Femtocells for LTE based Networks Using FFR & ANR techniques Introduction.			
5.2		LTE-Femtocell Network Architecture	74		
5.3		Fractional Frequency Reuse (FFR)	75		
	5.3.1.	Illustration of FFR Scheme	76		
5.4		Automatic Neighbor Relation (ANR)	77		
	5.4.1.	The feature methodology	78		
5.5		Main Points of the Thesis	81		
	5.5.1.	Brief Introduction	81		
	5.5.2.	FFR Enhancement	81		
	5.5.3.	Solution of Neighbors Problem and ANR Enhancement	83		
	5.5.4.	The proposed LTE-Femtocell System Architecture	86 87		
	5.5.5.	Analytical Model			
	5.5.5.1.	Numerical results	98		
	5.5.5.2.	Conclusion.	100		
5.6	5.5.6.	Proposed Handover Algorithm from Macrocell to Femtocell in LTE system. Conclusion.	100 111		
Ch	apter 6	Conclusion and Future Work	11		
6.1.		Conclusion.	112		
6.2.		Future Work.	113		
		References	114		

List of Figures

1.1	Approximate timeline of the mobile communications standards landscape	1
2.1	Spectral efficiency of OFDM compared to classical multicarrier modulation.	7
2.2	FDM carriers are placed to next to each other.	8
2.3	A bit stream that will be modulated using a 4 carrier OFDM	9
2.4	Sub-carrier 1 and the bits it is modulating (the first column of Table I)	10
2.5	Sub-carrier 2 and the bits that it is modulating (the 2 nd column of Table	10
2.6	I) Sub-carrier 3 and 4 and the bits that they modulating (the 3 rd and 4 th columns of Table I)	11
2.7	OFDM signal in time and frequency domain	11
2.8	Functional diagram of an OFDM signal creation. The outlined part is often called an IFFT block.	12
2.9 2.10	The generated OFDM signal, Note how much it varies compared to the underlying constant amplitude sub-carriers. The two views of a signal.	12 13
2.11	FFT and IFFT are a matched linear pair	15
2.12	The incoming block of bits can be seen as a four bin spectrum, The IFFT converts this "spectrum" to a time domain OFDM signal for one symbol, which actually has four bits in it	15
2.13	The OFDM link functions.	16
2.14	Fading is big problem for signals. The signal is lost and demodulation must have a way of dealing with it. Fading is particular problem when the link path is changing, such as for a moving car or inside a building or in a populated urban area with tall building	16
2.15 2.16	Reflected signals arrive at a delayed time period and interfere with the main line of sight signal, if there is one, in pure Raleigh fading, we have no main signal, and all components are reflected	17
	anything to pass. Data is lost sporadically. (c) With OFDM, where we	

		~	_	y a small sub-set of t	
2.17	Time	dispersion	and	corresponding	received-signal
2.18		•	•	d version(a) The d	
2.19	gray regi	on. No interfere	ence to the	riving delayed signa	
2.20	The exter	ision of the syn	nbol and 1	the corruption due to	o spiash
2.21	If we move the symbol back and just put in convenient filler in this area, then not only we have a continuous signal but one that can get corrupted and we don't care since we will just cut it out anyway before				
	demodula	ating			
2.22	Cyclic prefix is this superfluous bit of signal we add to the front of our precious cargo, the symbol				
2.23	The whole process can be done only once to the OFDM signal, rather than doing it to each and every sub-carrier				
2.24	Addition of Cyclic prefix to the OFDM signal further improves its ability to deal with fading and interference				
2.25	-		_	l (without addition on the QPSK	• •
2.26	The spec	trum of an OFD	OM signal	with 1024 sub-carr	iers
2.27	The spec	trum of a QPSk	K signal		•••••
2.28		•	•	like. It looks just	-
2.29			•	mbol 2 (a) beginnin	•
2.30	Effect of	frequency offse	et		
2.31	OFDMA	scheme: (a) do	wnlink ar	nd (b) uplink [2]	
3 1	The FDC	network eleme	nte		

3.2	Functional split between E-UTRAN and EPC	30
3.3	Overall E-UTRAN architecture	33
3.4	S1-MME control plane protocol stack	34
3.5	S1-U user plane protocol stack	35
3.6	S1-based handover procedure	36
3.7	X2 signaling bearer protocol stack	37
3.8	Transport network layer for data streams over X2	37
3.9	X2-based handover procedure	38
3.10	Downlink channel-dependent scheduling in time and frequency domains.	41
3.11	Example of inter-cell interference coordination, where parts of the spectrum is restricted in terms of transmission power	42
3.12	FDD vs. TDD, FDD: Frequency Division Duplex; TDD: Time Division Duplex; DL: Downlink; UL: Uplink	44
3.13	LTE protocol architecture (downlink)	45
3.14	Example of mapping of logical channels to transport channels	47
3.15	Frame structure type 1	48
3.16	Mapping between downlink transport channels and downlink physical channels	49
3.17	Mapping between uplink transport channels and uplink physical channels.	49
3.18	LTE downlink transport-channel processing. Dashed parts are only present in case of downlink spatial multiplexing, that is when two transport blocks are transmitted in parallel within a TTI	50
3.19	Downlink CRC insertion, calculating and appending a CRC to each transport block	51