# Study of conjunctival changes following treatment of retinoblastoma by radiotherapy and chemotherapy

Thesis
Submitted for partial fulfillment
of the M.Sc. Degree in
Ophthalmology

By
MUHAMMAD WAHID El-HAWARY
M.B.B.Ch.

Supervised by

#### Prof. Dr. OTHMAN ALI ZIKO

Professor of Ophthalmology Faculty of Medicine Ain Shams University

#### Lecturer Dr. MOMEN HAMDY

Lecturer of Ophthalmology Faculty of Medicine Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITRY CAIRO 2013

# بِسْمِ اللّهِ الرَّحْمَ الرَّحِيمِ

الْهَ الْهُ الْمُلْعُلُولُولُ اللّهُ الْمُلْعُلُولُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ الْمُلْعُلُولُ اللّهُ اللّمُ اللّهُ الللّهُ اللّهُ اللّمُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ الللّهُ اللّهُ اللّهُ اللّلْمُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ الللّهُ اللّهُ اللّهُ الل

"البقرة \_ آية ٣٢"

صدق الله العظيم

# Acknowledgment

I would like to express my deep gratitude to my supervisor, **Prof. Dr. Othman A. Ziko,** professor of ophthalmology, Faculty of Medicine, Ain Shams University, for suggesting the topic of this thesis, and for his helpful supervision, continuous encouragement and valuable instructions, without which this work would not have been possible. I would like as well to express my sincere appreciation and thankfulness to **Dr. Momen Hamdy,** Lecturer of ophthalmology, Faculty of Medicine, Ain Shams University, for his kind supervision, unlimited support and indispensable guidance throughout this work.

Also I would like to give my special thanks to **Dr. Azza**Muhammad Ahmad, Lecturer of ophthalmology, Faculty of
Medicine, Ain Shams University for her kind help, great efforts and
unforgettable advices that she gave me through the practical part of
this work. The gratefulness is also connected to **Dr. Wessam**Othman, Assistant Professor of Pathology, Faculty of Medicine, Ain
Shams University, who carried out the pathological examination of
the specimens in this work.

Last but not least, I wish to give much credit to my colleagues in the ophthalmology department, Ain Shams University, for their unlimited support and tremendous efforts, as well as my family members and my fiancée, for their unconditioned love and infinite support.

To my mother who spent her lifetime just to see me in this place...

May her soul rest in peace.

# List of contents

| List of Figures       |                                          | I   |
|-----------------------|------------------------------------------|-----|
| List of Tables        |                                          | III |
| List of Abbreviations |                                          | IV  |
| Review of Literature  |                                          | 1   |
| Clinical prese        | ntation                                  | 3   |
| Diagnoses and         | d ancillary testing                      | 6   |
| Differential di       | agnosis                                  | 6   |
| Systemic assoc        | ciation                                  | 7   |
| Management o          | f retinoblastoma                         | 7   |
|                       | A- Systemic chemotherapy                 | 8   |
|                       | B- Local chemotherapy                    | 11  |
|                       | C- External beam radiotherapy            | 12  |
|                       | D- Plaque radiotherapy                   | 15  |
|                       | e conjunctiva following radiotherapy<br> |     |
|                       | A- Radiotherapy                          | 17  |
|                       | B- Systemic chemotherapy                 | 18  |
| Impression cyt        | ology                                    | 19  |
| Patients And Methods  |                                          | 25  |
| Results               |                                          | 51  |
| Discussion            |                                          | 60  |

| Summary        | 66 |
|----------------|----|
| References     | 69 |
| Arabic Summary |    |

### **List of Figures**

| Fig. |                                                                                                                                                                                                | Page |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1    | Medium sized retinoblastoma                                                                                                                                                                    | 4    |
| 2    | Leukocoria and strabismus due to retinoblastoma                                                                                                                                                | 5    |
| 3    | Bilateral leukocoria due to bilateral retinoblastoma                                                                                                                                           | 5    |
| 4    | Impression cytology filter paper in its pack                                                                                                                                                   | 29   |
| 5    | A strip of the filter paper showing the shiny, smooth surface                                                                                                                                  | 31   |
| 6    | A strip of the filter paper showing the dull, rough surface                                                                                                                                    | 31   |
| 7    | A circular sheet of filter paper with its protective yellow cover, with 2 point-ended strips lying alongside                                                                                   | 32   |
| 8    | The serrated, non-toothed forceps used in grasping the strips, with the scissors used in cutting the strips in form, lying on two sheets of filter papers                                      | 32   |
| 9    | The process of applying the filter paper strip on the conjunctiva of the left eye of a case                                                                                                    | 35   |
| 10   | The process of holding the strip from its tapered end and applying it to the conjunctiva of the right eye of a case                                                                            | 35   |
| 11   | The fenestrated metal multi-sample carrier with its compartments. The lid also shows the holes drilled in it. Alongside are the metal grips that grip the four sides of the lid to the carrier | 37   |
| 12   | Filter paper strips arranged in the sample carrier just before closing it                                                                                                                      | 37   |
| 13   | The sample carrier is seen immersed in the deep red color of Gill's hematoxylin                                                                                                                | 38   |

#### List of Figures

| 14 | The sample carrier is immersed in the modified eosin stain                                                | 42 |
|----|-----------------------------------------------------------------------------------------------------------|----|
| 15 | Uncovered sample carrier immersed in xylene with the filter paper strips appearing stained brilliant blue | 42 |
| 16 | Mounted slides left for the Canada balsam to dry                                                          | 43 |
| 17 | ERMA® light microscope used for viewing samples.                                                          | 44 |
| 18 | Normal epithelium: a sheet of epithelial cells and goblet cells                                           | 54 |
| 19 | Comparison between the three groups regarding the different grades of cohesion power                      | 55 |
| 20 | Comparison between the three groups regarding the cell size                                               | 56 |
| 21 | Comparison between the three groups regarding the N/C                                                     | 57 |
| 22 | Comparison between the three groups regarding the goblet cell distribution                                | 58 |
| 23 | Comparison between the three groups regarding the degree of keratinization                                | 59 |

## List of Tables

| Table |                                                                            | Page |
|-------|----------------------------------------------------------------------------|------|
| 1     | The staining procedure with the time required for each step                | 39   |
| 2     | Comparison between the three groups regarding age                          | 52   |
| 3     | Comparison between the three groups regarding gender                       | 53   |
| 4     | Comparison between the three groups regarding the cohesion power           | 55   |
| 5     | Comparison between the three groups regarding the cell size                | 56   |
| 6     | Comparison between the three groups regarding the N/C                      | 57   |
| 7     | Comparison between the three groups regarding the goblet cell distribution | 58   |
| 8     | Comparison between the three groups regarding the degree of keratinization | 59   |

## List of Abbreviations

| ®     | Registered mark                        |
|-------|----------------------------------------|
| μg    | Microgram                              |
| ANOVA | Analysis Of Variance                   |
| CEV   | Carboplatin, etoposide and vincristine |
| cGy   | Centigray                              |
| CT    | Computerized Tomography                |
| ED    | Eye drops                              |
| EUA   | Examination under anesthesia           |
| F     | Fischer exact test                     |
| Fig.  | Figure                                 |
| GCD   | Goblet cell density                    |
| gm    | Gram                                   |
| Gy    | Gray                                   |
| HPF   | High power field                       |
| HS    | Statistically Highly-Significant       |
| IC    | Impression cytology                    |
| LM    | Light microscope                       |
| mg    | Milligram                              |
| ml    | Milliliter                             |
| mm    | Millimeter                             |
| MRI   | Magnetic Resonance Imaging             |
| n     | Number                                 |

| N/C  | Nucleus to cytoplasm ratio             |
|------|----------------------------------------|
| NS   | Statistically Non-Significant          |
| P    | Probability index                      |
| PAS  | Periodic acid-Schiff                   |
| PFV  | Persistent Fetal Vasculature           |
| RB1  | Retinoblastoma gene 1                  |
| ROP  | Retinopathy of prematurity             |
| SD   | Standard deviation                     |
| SPSS | Statistical Package for Social Science |
| SS   | Statistically Significant              |

#### REVIEW OF LITERATURE

Retinoblastoma is the most common primary intraocular malignant tumor of childhood; representing approximately 4% of all pediatric malignancies, second only to uveal melanoma as the most common primary intraocular malignant tumor in all age groups. The frequency of retinoblastoma ranges from 1 in 14,000 to 1 in 20,000 live births, depending on the country. There is no sexual predilection, and the tumor occurs bilaterally in 30%-40% of cases. Approximately 90% of cases are diagnosed in patients younger than 3 years. The mean age at diagnosis depends on family history and the laterality of the disease. Over 95% of children with retinoblastoma in the United States and other medically developed nations survive their malignancy, whereas about 50% survive worldwide. The reason for the poor survival in undeveloped nations relates to late detection of advanced retinoblastoma, often presenting with orbital invasion metastatic disease. (Rodrigues et al, 2004 and Rosa et al, 2011)

Retinoblastoma is typically diagnosed during the first year of life in familial and bilateral cases and between ages 1 and 3 in sporadic unilateral cases. Onset later than age 5 is rare but can

occur. A retinoblastoma is a neuroblastic tumor, biologically similar to neuroblastoma and medulloblastoma. Diagnosis of retinoblastoma can usually be based on its ophthalmoscopic appearance. Intraocular retinoblastoma can exhibit a variety of growth patterns; like intraretinal growth, endophytic growth, exophytic growth or occasionally diffuse infiltrating growth pattern. (Raab et al, 2011)

Retinoblastoma results from malignant transformation of primitive retinal cells before final differentiation. Because these cells disappear within the first few years of life, the tumor is seldom seen after 3 years of age. The gene predisposing to retinoblastoma (retinoblastoma gene RB1) is found at location 13q14. (Kanski et al, 2011)

It is known that retinoblastoma can be inherited as a familial tumor in which the affected child has a positive family history of retinoblastoma or as a nonfamilial (sporadic) tumor in which the family history is negative for retinoblastoma. Approximately 6% of newly diagnosed retinoblastoma cases are familial and 94% are sporadic. All patients with familial retinoblastoma are at risk to pass the predisposition for the development of the tumor to their offspring, but the manifestations are only 80% penetrant. Retinoblastoma is generally classified into: familial or sporadic, bilateral or unilateral, and hereditary or non hereditary. (Shields et al, 2006)

An association of neuroblastic intracranial malignancy exists in patients with the hereditary form of retinoblastoma, most often manifesting as pineoblastoma or other parasellar tumors. The pineoblastoma is identical to retinoblastoma from an embryologic and pathologic standpoint. This association of midline intracranial pineal tumors and suprasellar or parasellar neuroblastic tumors with bilateral retinoblastoma has been termed "trilateral" retinoblastoma. (**Bader et al, 1980**)

Spontaneous regression of retinoblastoma is also possible and can be asymptomatic, resulting in the development of a benign retinocytoma, or it can be associated with inflammation and, ultimately, phthisis bulbi. (**Raab et al, 2011**)

#### **CLINICAL PRESENTATION**

The clinical manifestations of retinoblastoma vary with the stage of the disease at the time of recognition. In its earliest clinical stage, a small retinoblastoma (i.e. less than 2 mm in basal dimension) appears ophthalmoscopically as a subtle, transparent or slightly translucent lesion in the sensory retina. Slightly larger tumors lead to dilated retinal blood vessels that feed and drain the tumor (**Fig. 1**). Some larger tumors show foci of chalk-like calcification that resemble cottage cheese. A retinoblastoma of any size can produce leukocoria. (**Shields and Shields, 1999 b**)

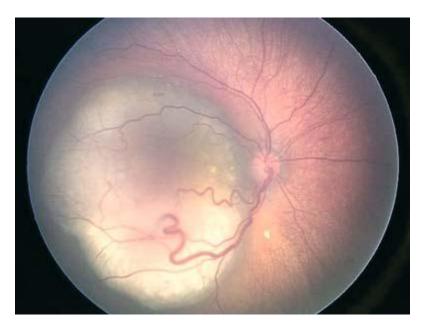



Figure 1: Medium sized retinoblastoma (Lorenz and Moore, 2006)

The most common presenting sign is leukocoria (white pupillary reflex), which is usually first noticed by the family and described as a glow, glint, or cat's-eye appearance (**Fig. 2 and 3**). Approximately 25% of cases present with strabismus (esotropia or exotropia) (**Fig. 2**). It may also present with ocular inflammation. The diagnosis of retinoblastoma can generally be suspected on the basis of an office examination with documented visual acuity. An examination under anesthesia (EUA) is needed in all patients suspected of having retinoblastoma to permit a complete assessment of the extent of ocular disease prior to treatment. (**Rosa et al, 2011**)