

A pharmacological study of the potential antifibrotic effect of *Biochanin A* on experimentally induced liver fibrosis

A thesis submitted for the fulfillment of the requirements of the Master Degree in Pharmaceutical Sciences (Pharmacology & Toxicology)

By

Randa Mamdouh Aly Ahmed Breikaa

B.Pharm.Sc., Ain Shams University (2009) Demonstrator of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University

Under the supervision of

Prof. Dr. Ashraf B. Abdel-Naim

Professor of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University

Prof. Dr. Ebtehal El-Demerdash Zaki

Professor & head of the Pharmacology & Toxicology department, Faculty of Pharmacy, Ain Shams University

Faculty of Pharmacy, Ain Shams University (2013)

A pharmacological study of the potential antifibrotic effect of *Biochanin A* on experimentally induced liver fibrosis

A thesis submitted for the fulfillment of the requirements of the Master Degree in Pharmaceutical Sciences (Pharmacology & Toxicology)

By

Randa Mamdouh Aly Ahmed Breikaa

B.Pharm.Sc., Ain Shams University (2009) Demonstrator of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University

Under the supervision of

Prof. Dr. Ashraf B. Abdel-Naim

Professor of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University

Prof. Dr. Ebtehal El-Demerdash Zaki

Professor & head of the Pharmacology & Toxicology department, Faculty of Pharmacy, Ain Shams University

Faculty of Pharmacy, Ain Shams University (2013)

پِسَمِٱللهِٱلرَّحْمَنِٱلرَّحِيمِ

صدق الله العظيم 🔘

سورة طه

Pre-requisite Post-Graduate Courses

Besides the work presented in this thesis, the candidate has attended the following courses:

General courses:

- 1. Instrumental analysis
- 2. Physical chemistry
- 3. Computer skills
- 4. Biostatistics

Special courses:

- 1. Pharmacology
- 2. Toxicology
- 3. Neuropharmacology
- 4. Molecular pharmacology
- 5. Selected topics in pharmacology & toxicology

She has successfully passed examination in these courses with general grade EXCELLENT.

Head of Pharmacology & Toxicology Department

Prof. Ebtehal El-Demerdash Zaki

Acknowledgements

It may not be enough to contain the words of thanksgiving and gratefulness for the grace and blessings of **Allah**.

I would like to relay and express my deep gratitude to **prof. dr. Ashraf B. Abdel-Naim**, Professor of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, for his continuous support and advice during the course of my work. His untiring effort in guiding and conveying a spirit of challenge in regard to research, encouraged me to pursue professional growth.

I am greatly indebted to **prof. dr. Ebtehal El-Demerdash Zaki**, Professor & head of the Pharmacology & Toxicology department, Faculty of Pharmacy, Ain Shams University, whose encouragement, guidance and support from the initial to the final step enabled me to develop a better understanding and a more refined view of the subject. She was a great influence and a great inspiration.

Most sincere thanks are due to all my colleagues who gave me advice and support all the way.

A special thanks is directed to **Eman Mohamed Mantawy**, Assistant Lecturer of Pharmacology

& Toxicology, Faculty of Pharmacy, Ain Shams University, and my dearest friend, who helped

me a lot during my work.

My last thanks are for **my family**; my parents & my two great sisters, without their patience, continuous prayers and steadfast encouragement, I wouldn't be able to complete this thesis.

Randa M. Breikaa

List of Contents

/	List of abbreviations I
/	List of tables III
	List of figures IV
	Abstract
	Introduction
	A. Liver fibrosis
	I. Definition
	II. Background and Causes
	III. Pathogenesis
	1. Destruction of liver integrity 5
	2. Compromised liver efficiency
	3. Stellate cell activation 8
	4. Oxidative stress 10
	5. Inflammatory response
	6. Role of nuclear factor-kappa B 12
	7. Role of transforming growth factor-beta 15
	8. Matrix degradation and remodeling 18
	IV. Therapeutic approaches 20
	1. The inflammatory or immune responses
	2. The activation and recruitment of HSCs
	3. Profibrogenic growth factors and other mediators 23
	4. Stimulation of fibrolytic processes
	5. Apoptosis of activated HSCs
	B. Biochanin A (BCA)
	I. Origin
	II. Chemical aspects
	III. Pharmacokinetics
	IV. Pharmacodynamics
	Aim of work
	Materials and methods
	A.Design
	I. Estimation of the median lethal dose
\	II. Screening of the hepatoprotective dose

III Ctudy of the machanisms underlying the notantial	
III. Study of the mechanisms underlying the potential	25
hepatoprotective and antifibrotic effects of BCA	
B. Materials	
I. Animals	
II. Drug	
III. Chemicals	
IV. Buffers	
V. Kits	
C.Methods	
I. Hepatotoxicity markers	
1. Alanine aminotransferase	53
2. Aspartate aminotransferase	55
3. Alkaline phosphatase	57
4. Total bilirubin	59
5. Total cholesterol.	60
6. Triglycerides	62
II. Hepatic efficiency	64
1. Hepatic blood flow	64
2. Synthetic capacity	67
2.1 Total proteins	67
2.2 Albumin	68
3. Metabolic capacity	69
3.1 Cytochrome P450 2E1	69
3.2 Cytochrome P450 1A1	
3.3 Sulfotransferase 1A1	75
III. Oxidative stress markers	80
1. Lipid peroxides	80
2. Reduced glutathione	82
3. Superoxide dismutase	
4. Catalase	
5. Total antioxidant capacity	88
IV. Inflammatory markers	
1. Tumor necrosis factor-alpha	
2. Nitric oxide	

\
95
95
9
9
01
)2
)4
)5
06
52
63
66

List of Abbreviations

ALP	Alkaline phosphatase
ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
BCA	Biochanin A
CAT	Catalase
CCl ₄	Carbon tetrachloride
COX-2	Cyclooxygenase-2
СҮР	Cytochrome P450
CYP1A1	Cytochrome P450 1A1
CYP2E1	Cytochrome P450 2E1
DMSO	Dimethylsulfoxide
ECM	Extracellular matrix
GSH	Reduced glutathione
H and E	Hematoxylin and Eosin
HSCs	Hepatic stellate cells
ICG	Indocyanine green
IL	Interleukin
iNOS	Inducible form of nitric oxide synthase
LD ₅₀	Median lethal dose
MDA	Malondialdehyde
MMPs	Matrix metalloproteinases

NF-ĸB	Nuclear factor kappa B
NO	Nitric oxide
NOx	Total nitrite/nitrate
OD	Optical density
ROS	Reactive oxygen species
RQ	Relative quantitation
RT-PCR	Real time-polymerase chain reaction
SOD	Superoxide dismutase
SULT	Sulfotransferase
TAC	Total antioxidant capacity
TBARS	Thiobarbituric acid reactive substances
TC	Total cholesterol
TG	Triglycerides
TGF-β	Transforming growth factor-beta
TIMP	Tissue inhibitor of metalloproteinase
TNF-α	Tumor necrosis factor-alpha
TP	Total proteins
α-SMA	Alpha smooth muscle actin

List of Tables

Table no.	Table title	Page no.
1	LightCycler® program for RQ of SULT1A1 expression	79
2	LD ₅₀ findings	106
3	Effect of different doses of BCA on serum levels of hepatotoxicity markers in rats subjected to acute CCl ₄ intoxication	109
4	Effect of BCA on serum levels of hepatotoxicity markers in rats subjected to chronic CCl ₄ intoxication	116
5	Effect of BCA on hepatic efficiency markers in rats subjected to chronic CCl ₄ intoxication	121
6	Effect of BCA on hepatic oxidative stress markers in rats subjected to chronic CCl ₄ intoxication	127
7	Effect of BCA on hepatic TNF-α and NO in rats subjected to chronic CCl ₄ intoxication	132
8	Effect of BCA on hepatic TGF-β1 and hydroxyproline in rats subjected to chronic CCl ₄ intoxication	142

List of Figures

Figure no.	Figure title	Page no.
1	Changes in the hepatic architecture associated with hepatic fibrosis	4
2	Hypothetical scheme for the role of CYP2E1 in hepatic fibrosis	7
3	Pathways of hepatic stellate cell activation	9
4	Mechanism of activation and action of NF-κB	14
5	Simplified scheme of the TGF-β/Smad pathway	17
6	Structures of genistein and BCA	27
7	Metabolic pathways of BCA	29
8	Standard calibration curve of ALT	54
9	Standard calibration curve of AST	56
10	Standard calibration curve of ICG	66
11	Standard calibration curve of p-nitrocatechol	71
12	Standard calibration curve of CYP1A1	74

Figure no.	Figure title	Page no.
13	Outline of RNA extraction steps according to Qiagen kit	78
14	Standard calibration curve of MDA	81
15	Standard calibration curve of GSH	83
16	Standard calibration curve of TNF-α	92
17	Standard calibration curve of NaNO ₃	94
18	Standard calibration curve of TGF-β1	98
19	Standard calibration curve of hydroxyproline	100
20	Effect of different doses of BCA on serum levels of ALT, AST and ALP in rats subjected to acute CCl ₄ intoxication	110
21	Effect of different doses of BCA on serum levels of total bilirubin, TC and TG in rats subjected to acute CCl ₄ intoxication	111
22	Effect of different doses of BCA on liver histopathology after H and E staining followed by grading of acute liver tissue damage (x100)	113
23	Effect of BCA on serum levels of ALT, AST and ALP in rats subjected to chronic CCl ₄ intoxication	117

Figure no.	Figure title	Page no.
24	Effect of BCA on serum levels of total bilirubin, TC and TG in rats subjected to chronic CCl ₄ intoxication	118
25	Effect of BCA on serum levels of TP and albumin in rats subjected to chronic CCl ₄ intoxication	122
26	Effect of BCA on hepatic CYP2E1 and CYP1A1 in rats subjected to chronic CCl ₄ intoxication	123
27	Melting curves and amplification plots of β-actin and SULT1A1	124
28	SULT1A1 relative quantitation (RQ) versus group mean plot	125
29	Effect of BCA on hepatic lipid peroxides and GSH in rats subjected to chronic CCl ₄ intoxication	128
30	Effect of BCA on hepatic SOD, CAT and TAC in rats subjected to chronic CCl ₄ intoxication	129
31	Effect of BCA on hepatic TNF-α and NO in rats subjected to chronic CCl ₄ intoxication	133
32	Expression of iNOS in rats subjected to chronic CCl ₄ intoxication by immunohistochemical staining (x100)	134
33	Results of image analysis of iNOS expression presented as percentage of positive cells	135
34	Expression of COX-2 in rats subjected to chronic CCl ₄ intoxication by immunohistochemical staining (x100)	136