Advances and Emerging Applications of Spectral Domain Optical Coherence Tomography Imaging in Ophthalmology

Essay

Submitted for Partial fulfillment Of Master Degree in Ophthalmology

By

Shaimaa Mostafa Abd El Hamid

(M.B.,B.Ch)

Faculty of Medicine, Ain Shams university

Under Supervision of

Professor Dr. Alaa Fathy Mahmoud

Professor of ophthalmology Faculty of Medicine, Ain Shams university

Dr. Mohammad Ahmad Rashad

Assistant Professor of ophthalmology Faculty of Medicine, Ain Shams university

Faculty of Medicine, Ain Shams university Cairo-2013

الْعَلَيْمُ الْمَاعَلَىٰ الْعَلِيمُ الْمَاعَلِيمُ الْمَاعَلِيمُ الْمَاعِلَا مِلْعَالِمُ الْمَعْمَدُا إِذَاتُ الْمَعْمُ الْمُعْمِدُا إِذَاتُ الْمَعْمُ الْمُعْمِدُا إِذَاتُ الْمُعْمِدُا الْمُعْمِدُونِهُمُ الْمُحْمِدُونِهُمُ الْمُحْمِيدُ الْمُحْمِدُونِهُمُ الْمُحْمِدُونِهُمُ الْمُحْمِدُونِهُمُ الْمُحْمِدُونِهُمُ اللّهُ الْمُحْمِدُونِهُمُ اللّهُ الْمُحْمِدُونِهُمُ اللّهُ الْمُحْمِدُونِ اللّهُ الْمُحْمِدُونِ الْمُحْمِيدُ الْمُحْمِدُونِ الْمُحْمِدُونِ اللّهُ الْمُحْمِدُونِ الْمُحْمِيدُونِ الْمُحْمِدُونِ الْمُحْمِدُونِ الْمُحْمِدُونِ الْمُحْمِدُونِ الْمُحْمِدُونِ الْمُحْمِدُونِ الْمُحْمُدُونِ الْمُحْمِدُونِ الْمُحْمُدُونِ الْمُحْمُدُونِ الْمُحْمُدُونِ الْمُحْمُدُونِ الْمُعُمُونِ الْمُحْمُدُونِ الْمُحْمُدُونِ الْمُحْمُدُونِ الْمُحْمُدُ الْمُحْمُدُونِ الْمُحْمُدُونِ الْمُحْمُدُونِ الْمُحْمُدُونِ الْمُحْمُدُونِ الْمُحْمُدُونِ الْمُعُمُونِ الْمُعُمُ الْمُعُمُونِ الْمُعُمُونِ الْمُعُمُونِ الْمُعُمُونِ الْمُعُم

سورة البقرة آية رقم:(32)

Acknowledgement

First of all thanks for Allah, to whom I relate any success in achieving any work in my life.

I would like to express my thanks and grateful appreciation to **Prof. Dr. Alaa Fathy Mahmoud,** Professor of ophthalmology, Faculty of Medicine, Ain shames University, for his valuable advice and kind encouragement.

I would also like to express my thanks and sincere gratitude to Assistant Prof. Dr. Mohammad Ahmad Rashad, assistant professor of ophthalmology, Faculty of Medicine, Ain Shams University, for his kind close supervision, valuable advice and unlimited guidance.

Last but not least, I want to thank my family for their endless encouragement and support.

Contents

page
List of abbreviations
List of figuresvı
List of tablesxı
Introduction and Aim of the work
Chapter 1:SDOCT versus TDOCT.
A.History and Evolution of OCT
7.Advantages of SDOCT
Chapter 2: <u>SDOCT in chorioretinal blood flow</u> assessment.
1. Techniques of Assessing ocular blood flow

4. Choroidal imaging with SDOCT45
Chapter 3: Polarization sensitive SDOCT.
1.The polarization state of various ocular tissues
Chapter 4: Intraoperative SDOCT.
1. Intraoperative handheld SDOCT
Summary 107
References
Arabic summary

3D- OCT	Three dimensional OCT
3D-	Three dimensional spectral domain OCT
SDOCT	
AMD	Age related macular degeneration
BIOM	Binocular Indirect Ophthalmo Microscope
BRVO	Branch retinal vein occlusion
CCD	Charge-coupled device
CNV	Choroidal neovascularization
CSCR	Central Serous Chorioretinopathy
dA	Differential area
DALK	Deep Anterior Lamellar Keratoplasty
DOCT	Doppler OCT
DOPU	Degree of polarization uniformity
DOPUmin	Minimal DOPU value
DSAEK	Descemet's stripping automated endothelial
	keratoplasty
EDI	Enhanced Depth Imaging
ELM	External limiting membrane
FDOCT	Fourier domain OCT
GCL	Ganglion cell layer
IJT	Idiopathic Juxtafoveal Telangiectasia
ILM	Internal limiting membrane
INL	Inner nuclear layer
IPL	Inner plexiform layer,
IS/OS	Inner segment/outer segment parts of
	photoreceptors
LASIK	Laser Assisted in Sito Keratomileusis
MMOCT	Microscope Mounted OCT
NAION	Nonarteritic Ischemic Optic Neuropathy
OCT	Optical coherence tomography

ODT	Optical Doppler tomography
OMAG	Optical Micro-Angiography
ONH	Optic nerve head
ONL	Outer nuclear layer
OPL	Outer plexiform layer
PDR	Proliferative diabetic retinopathy
PED	Pigment epithelial detachement
PFO	Perfluoro-n-octane
PR-	Phase Resolved DOCT
DOCT	Thase Resolved DOC1
PS	polarization sensitive SDOCT
SDOCT	
PSL	Polarization scrambling layer
PSOCT	Polarization sensitive OCT
QWP	Quarter wave plate
RNFL	Retinal nerve fiber layer
ROP	Retinopathy of prematurity
RPE	Retinal pigment epithelium
RT	Retinal thickness
S	Surface of blood vessel
SDOCT	Spectral domain OCT
SLD	Superluminescent diode
SLO	Scanning laser ophthalmoscope
SVP	Summed Voxel Projection
TDOCT	Time domain OCT
TRBF	Total retinal blood flow
UHR	Ultrahigh resolution SDOCT
SDOCT	

List of abbreviation

UHR	Ultrahigh resolution TDOCT
TDOCT	
v	Velocity vector
V z	Doppler flow velocity
VF	Visual field
VKH	Vogt Koyanagi Harada
θ	Doppler angle

Figure	Title	Page
1	Diagram of the basic principle of OCT	7
	system.	
2	Diagram of the basic principle of	10
	conventional TDOCT.	
3	Schematic of TDOCT imaging.	10
4	Diagram of the basic principle of SDOCT.	13
5	Schematic of SDOCT imaging system.	13
6	SDOCT image of the retina (macula and	15
	optic nerve head) (grey scale).	
7	Colour scale OCT of the retina.	16
8	RNFL thickness in four quadrants in	18
	optic nerve head.	
9	Normal retina comparison of TDOCT	20
	image and cirrus SDOCT image.	
10	Difference in image resolution between	21
	TDOCT& SDOCT images.	
11	Macular dystrophy.	22
12	SDOCT image of CSCR.	23
13	SDOCT image of macular hole with	23
	posterior vitreous detachement.	
14	3D-OCT image of a normal retina.	25
15	3D topography thickness map.	25
16	Segmentation of retinal layers with	26
	SDOCT.	
17	TruTrack feature of the SDOCT.	27
18	Different OCT ophthalmic companies	30
	products.	
19	OCT scans showing the inner and outer	31
• •	retinal layer segmentation.	- ·
20	Double circular scaning pattern.	34
21	Double circular pattern showing the	35
	doppler angle θ .	

22	Calculation of blood flow involves	37
22	extraction of the Doppler angle θ .	20
23	Calculation of blood flow with the	38
	Doppler angle θ , and in en facedoppler.	
24	Fringe washout effect in large blood	39
	retinal vessels.	
25	The relationship between the VF loss and	40
	TRBF in optic nerve diseases.	
26	DOCT of an eye with NAION.	41
27	DOCT of an eye with superotemporal	43
	BRVO.	
28	Image averaging of the choroid using	45
	Cirrus HD OCT.	
29	The image is inverted to show the choroid	47
	clearely.	
30	OCT image demonstrating EDI on	48
	Spectralis (Heidelberg Engineering).	
31	Choroidal thickness measurement	49
32	OCT image of the normal choroid taken	50
	on Spectralis with EDI and over sampling.	
33	OCT image of the normal choroid taken	51
	on Cirrus HD-OCT with 20 images	
	averaged.	
34	OCT image of the choroid of a patient	52
	with exudative AMD taken on Cirrus HD-	
	OCT with 20 images averaged.	
35	OCT image of the choroid of a patient	53
	with CSCR taken on Cirrus HD-OCT with	
	20 images averaged	
36	The 1,050-nm OCT B-scans of a patient	54
	with CSCR.	

37	SDOCT showing localized thinning of the choroid in multifocal choroiditis Normal	55
38	pulmonary arteries. SDOCT scans of the left eye with	56
30	choroidalosteoma.	30
39	SDOCT with EDI in a patient with	57
	choroidalhemangioma	
40	OCT image of the choroid of a patientwith	58
	high myopia taken on Cirrus HD-OCT	
	(Carl Zeiss Meditec, Inc) with 20 images	
	averaged.	
41	OCT image of the choroid of a patient	59
	with retinitis pigmentosa taken on Cirrus	
	HD-OCT (Carl Zeiss Meditec, Inc) with	
	20 images averaged.	
42	Schematic diagram of PSOCT.	61
43	Sketch of PS SDOCT instrument.	62
44	SDOCT B-scan images of a healthy fovea	63
	(DOPU).	
45	En face images of the macular region in a	65
	healthy volunteer.	
46	PS SDOCT of human cornea in vitro.	67
47	En face images retrieved from the	68
	posterior surface of a human cornea	
	in vitro.	
48	Images of PS SDOCT of akeratoconus	68
	cornea.	
49	Images of human anterior chamber angle	69
	in vivo.	
50	PSOCT of external ocular tissue.	70
51	PS SDOCT images of exudative AMD.	71
52	PS SDOCT images of AMD with CNV.	72
53	PS SDOCT images of AMD with	73
	geographic atrophy.	

54	PS SDOCT images of a patient with IJT	74
	(group 1).	
55	SDOCT and PS SDOCTimagesof a	75
	patient with IJT (group 2).	
56	PS SDOCT images of a patient with IJT	76
	(group 3).	
57	Circumpapillary PSOCT scans (1000 A-	77
	scans from healthy human retina in vivo).	
58	PSOCT scan of the retina of a normal	78
	volunteer, centered on the ONH.	
59	PS SDOCT shows RNFL Birefringence	79
	in a healthy Volunteer	
60	PS SDOCT shows RNFL Birefringence	79
	in a glaucomatous patient	
61	Intraoperative use of the handheld	81
	BioptigenSDOCT scanner	
62	SD OCT (SVP &B scan images).	82
63	MMOCT system images.	83
64	Optical schematic and photograph of the	86
	MMOCT.	
65	MMOCT of surgical instrument (forceps)	87
	over the optic nerve in cadaveric porcine	
	eye.	
	MMOCT obtained B-scans of surgical	
66	manipulation with the diamond-dusted	88
	silicone Tano scraper in a cadaveric	
	porcine eye.	
67	MMOCT scans of MVR blade.	92
68	MMOCT scan of a forceps.	92
69	MMOCT scans of a metallic subretinal	93
	needle.	
70	MMOCT scans of a polyamide subretinal	93
	needle.	
71	MMOCT of diamond-dusted membrane	94
	scraper.	

72	MMOCT image of a silicone soft-tip.	94
73	Comparison of pre operative&	95
	intraoperative SDOCT images of a patient	
	with a nonpenetrating macular hole with	
	vitreoretinal traction.	
74	Intraoperative SDOCT of macular hole	96
	with ILM peeling.	
75	Intraoperative SDOCT imaging of	97
	macular hole after ILM peel.	
76	Comparison of preoperative and	98
	intraoperative handheld SDOCT images	
	for a patient with vitreomacular traction.	
77	SDOCTimages obtained preoperatively,	99
	intraoperatively, and postoperatively of	
	macula-off rhegmatogenous retinal	
	detachment.	
78	Intraoperative SDOCT enables real-time	102
	visualization of all DALK surgery steps.	
	Intraoperative SDOCT scans of the	105
79	surgical stages of DSAEK surgery.	

Table	Title	Page
1	Comparison between TDOCT, SDOCT,	24
	UHR SDOCT	
2	Comparison of Commercial OCT	30
	Devices	
3	TRBF, vessel cross-Sectional areas and	44
	average velocities in normal and	
	pathological Eyes	
4	OCT Characteristics of Intraocular	91
	Instruments	

Introduction

Optical coherence tomography (OCT), first reported as retinal imaging tool in 1991, is an interferometric tool for 3D imaging of objects hidden in scattering media such as the human eye (**Huang et al., 1991**).

Spectral domain optical coherence tomography (SDOCT) provides a number of advantages over conventional time domain OCT (TDOCT) systems, SDOCT offers higher acquisition speed and thus the ability to obtain significantly more images in a shorter period of time. This increased speed minimizes patient movement artifact and improves image resolution, the higher resolution obtained with SDOCT imaging may improve the detection of abnormalities (**Gupta et al.,2008**).

Doppler OCT (DOCT) imaging enables 3D visualization of the chorioretinal vasculature as in exudative macular diseases (Makita et al., 2006).

Exudative macular diseases include age-related macular degeneration (AMD), which is the major cause of severe loss of central vision (**Klein et al., 1991**).

Conventional intensity based OCT achieves a high depth resolution of a few µm and can resolve several retinal layers, however it cannot directly differentiate different tissues. Polarization sensitive OCT (PSOCT) takes advantage of the additional polarization information carried by the reflected light and can thereby reveal important