A comparative study between small incision suturless non-phaco cataract extraction and conventional phacoemulsification in old age

Thesis Submitted for partial fulfillment of Medical Degree in Ophthalmology

By

Ahmed Ibrahim Howaidy

M.B., B.Ch., M.Sc. oph

Under Supervision of

Prof. Dr. Amin Gad EL Rab Atta

Professor of Ophthalmology Faculty of Medicine

Ain Shams University

Prof. Dr. Ali Hassan Saad

Professor of Ophthalmology

Faculty of Medicine

Ain Shams University

Dr. Mohamed Moghazy Mahgoub

Assistant Professor of Ophthalmology

Faculty of Medicine

Ain Shams University

Faculty of Medicine Ain Shams University 2012

ACKNOWLEDGEMENT

First and foremost, I thank God who gave me the strength to fulfill this work.

I was indeed honored to be supervised by **PROF. DR.Ameen Gad Elrab,** Professor of Ophthalmology,

Faculty of Medicine, Ain Shams University, for his precious supervision, advice and kind support.

I would like to express my sincere gratitude to **PROF. DR.** ALI HASSAN SAAD, Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his generous supervision, keen interest and precious time he offered me throughout this study. I consider myself very fortunate to have worked under his supervision.

I wish also to express my deep gratitude to **DR**, **Mohamed Moghazi Mahgoub**, assistant Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his continuous support, valuable remarks and for offering me much of his time and effort throughout this study.

List of Figures

Figure number		Page
1	Corneal histology	9
2	Different corneal epithelial layers	9
3	Wide-field specular microscopy corneal endothelium	10
4	Specular microscopy of human corneal endothelium	10
5	Water driving forces into the corneal stroma	15
6	Different layers of human lens	22
7	Lens capsule thickness in different locations	22
8	Cross-section of the lens	22
9	Schematic representation of endothelial response to surgery	24
10	Javal schiotz keratometer	28
11	Keratometric mires	28
12	Graphical method of vector analysis	32
13	Contact ultrasound Pachymeter	36
14	Hand-held contact ultrasound pachymeter	36
15	Optical principle of the specular microscope	39
16	Specular biomicroscopy of normal corneal endothelium	39
17	Normal corneal topography	43
18	Bowtie pattern topography of high corneal astigmatism	43
19	Topography of a keratoconic cornea	19
20	Posterior keratoconus by orbscan	19
21	Fluorophotometer	21
22	Legacy Phaco Machine with its hand piece	47
23	Scleral tunnel incisions	49
24	A phaco tip in AC performing phaco- emulsification	51
25	Diagrammatic representation of the phaco machine	25

26	The stages of a chip and flip technique	54
27	The stages of divide and conquer technique	55
28	The stages of horizontal chop technique	56
29	The stages of stop & chop technique	57
30	Mature senile cataract	61
31	Cornea guttata in Fuchs dystrophy	62
32	Stromal oedema & folds in D.M. in Fuchs	
	dystrophy	62
33	Wound & scleral tunnel construction	64
34	Size and location of the scleral incision	65
35	Different forms of incisions	67
36	Ideal depth of the scleral flap	68
37	Width of the scleral tunnel	69
38	Nucleus extraction with irrigating vectis	71
39	Nucleus extraction with Blumenthal	72
40	Nucleus extraction with the phacosection	
	technique	74
41	Nucleus extraction with the fish hook	75
42	Surgical steps of MSICS	78
43	Nucleus delivery by sandwich tecnique	78
44	Continuous Curvilinear Capsulorrhexis.	89
45	Hydrodissection.	89
46	Divide and conquer technique.	89
47	I/A of the cortical matter in phaco-	0.0
	emulsification	90
48	Capsular bag filled with viscoelastics	90
49	Implantation of foldable IOL	90
50	IOL dialing into the Capsular bag	90
51	Steps of MSICS	94

List of Tables

Figure number		Page
number 1	Age distribution among the study group	99
2	Sex distribution among the study groups	100
3	Comparison between the mean preoperative and postoperative CCT between the two groups.	101
4	Comparison between the mean preoperative and postoperative CCT & comparison between the changes in pachymetric readings in each postoperative stage compared to preoperative in group I	102
5	Comparison between the mean preoperative and postoperative CCT & comparison between the changes in pachymetric readings in each postoperative stage compared to preoperative in group II	103
6	Comparison between the two groups as regards the postoperative mean percentage of change (increase) of corneal pacymetry	104
7	Comparison between the mean preoperative and postoperative corneal astigmatism at different stages	106
8	Comparison between the mean preoperative and postoperative corneal astigmatism in group I as well as a comparison between the changes in keratometric corneal astigmatism in each postoperative stage compared to preoperative.	107
9	Comparison between the mean preoperative and postoperative corneal astigmatism in group II as well as a comparison between the changes in keratometric corneal astigmatism in each postoperative stage compared to preoperative.	109
10	Comparison between the two groups as regards the postoperative mean percentage	110

	of change (increase) of corneal astigmatism	
11	Comparison between the group I and II as regard the mean SIA at 3 months.	112
12	Preoperative visual acuity in both groups	113
13	Postoperative UCVA at 1 day and 3 months	115
14	Comparison between postoperative BCVA2 at 1 week in group I & II.	116
15	Comparison between the BCVA2 1 week postoperative & BCVA1 preoperative in each group.	117
16	Comparison between postoperative BCVA3 at 1 month in group I & II.	118
17	Comparison between the BCVA3 1 month postoperative & BCVA1 preoperative in each group.	119
18	Comparison between the BCVA3 1 month postoperative & BCVA2 1week postoperative in each group.	120
19	Comparison between postoperative BCVA4 at 3 months in group I & II.	121
20	Comparison between the BCVA4 3 month postoperative & BCVA1 preoperative in each group.	122
21	Comparison between the BCVA4 3 month postoperative & BCVA2 1week postoperative in each group	123
22	Comparison between the BCVA4 3 month postoperative & BCVA3 1month postoperative in each group	124

List of Graphs

Graph		Dogo
number		Page
1	Sex distribution among the study groups.	100
2	Mean CCT between the two groups in different stages	101
3	Mean CCT of Group I in different stages.	103
4	Mean CCT of Group II in different stages	104
5	Comparison between the two groups as regards the mean percentage of change (increase) of corneal pacymetry postoperatively at different stages.	105
6	Mean corneal astigmatism between the two groups in different stages	107
7	Mean corneal astigmatism of Group I in different stages.	108
8	Mean corneal astigmatism of Group II in different stages.	110
9	Comparison between the two groups as regards the mean percentage of change of corneal astigmatism postoperatively at different stages.	111
10	Comparison between the group I and II as regard the mean SIA at 3 months.	112
11	Preoperative visual acuity in both groups	114
12	Postoperative UCVA at 1 day & 3 months post operative	115
13	Comparison between the two groups as regards the BCVA2 at 1 week postoperative	116
14	Comparison between the two groups as regards the BCVA3 at 1 month postoperative	118
15	Comparison between the two groups as regards the BCVA4 at 3 months postoperative.	121

List of Abbreviations

AC	Anterior chamber
ACM	Anterior chamber maintainer
ATR	Against the role
AFR	Aspiration flow rate
BCVA	Best corrected visual acuity
BSS	Balanced salt solution
CCI	Clear lens incision
CCC	Continous curvilinear capsulorrhexis
CS	Corneal sensitivity
D	Diopter
ECCE	Extracapsular cataract extraction
G	Gauge
I/A	Irrigation/aspiration
IOL	Intraocular lens
MHz	Mega hertz
mm	Millimeter
ms	Millisecond
MSICS	Manual small incision cataract surgery
MVR	Microvitroretinal blade
OVD	Ophthalmic viscoelastics device
PCO	Posterior capsular opacification
PMMA	Polymethyl metaacrylate
pps	Pulses per second
SAI	Surface asymmetry index
SD	Standard deviation
Sec	Second
SIA	Surgically induced astigmatism
SICS	Small incision cataract surgery
SRI	Surface regularity index
UCVA	Uncorrected visual acuity
US	Ultrasound
WTR	With the rule
	·

Table of Contents

Contents	Page
Acknowledgement	
List of Figures	i
List of Tables	iii
List of Graphs	V
List of Abbreviations	vi
Table of Contents	vii
Introduction	1
Aim of Work	3
Anatomy of The Cornea	4
Physiology of The Cornea	11
Anatomy of The Lens	16
Astigmatism	25
Methods of Evaluating Corneal Astigmatism	25
Methods of Calculating SIA	29
Pachymetry	33
Specular Reflection	37
Specular Microscopy	37
Corneal Topography	40
Hypoxic Stress Test	45
Corneal Fluorophotometry	45
Types of Phacoemulsification Incisions	48
Physics of Phacoemulsification	50
Techniques of Phacoemulsification	54
Complications of Phacoemulsification	59
Small Incision Suturless Cataract Extraction	63
Designs and Architecture of The Wound in SICS	65
Nucleus Management in SICS	69
Surgical Steps of SICS	76
Complications of SICS	79
Advantages of SICS	81
Patients and Methods	84

Operative Procedures of Phacoemulsification	87
Operative Procedures of SICS	91
Postoperative Assessment	96
Results	98
Complications	125
Discussion	127
Conclusion	136
References	139
English Summary	156
ملخص الرسالة	Í

INTRODUCTION

Various surgical techniques have been used in management of cataract which includes: intracapsular cataract extraction (ICCE), extracapsular cataract extraction (ECCE) and ultrasonic phacoemulsification (Shepherd, 1997).

Before the evolution of ultrasonic phacoemulsification extracapsular cataract extraction (ECCE) was the favorable procedure with relatively higher incidence of intraocular infections, slower rate of visual recovery and undesirable higher values of postoperative astigmatism due to the relatively large number of stitches taken (Meisler et al., 1992).

With the evolution of ultrasonic phacoemulsification cataract extraction became easier and more efficient, with rapid visual recovery, dramatically lower values of postoperative astigmatism and lower incidence of intraoperative and postoperative complications in general when compared with the conventional extracapsular cataract extraction done before (**Shepherd**, **1997**).

However, there are also many disadvantages of ultrasonic phacoemulsification including being a relatively difficult technique with a long learning curve, expensive, high maintenance equipment and disposables required, the non availability of foldable IOLs specially in developing countries, wasting the 3 mm incision which is then enlarged to 6 mm, in addition to the harmful effect of the ultrasound waves on the sensitive corneal endothelium especially in old age and hard cataracts in which the ultrasonic phacoemulsification is not preferred (**Ruit et al., 2000**).

The costs of ultrasonic phacoemulsification in general make one of the most vital and challenging disadvantages of the procedure as regard poor and developing communities in particular (Gogate et al., 2003).

During the early 1980s, when a self-sealing tunnel incision was introduced in the USA in an attempt to provide better healing with less surgically induced astigmatism it became the favored incision technique with various instruments and techniques developed to extract the whole nucleus or cut it into parts, for easy extraction through a smaller self-sealing sclero-corneal tunnel (**Keener**, 1991).

In 1990 this technique is revitalized in developing countries especially India and the sutureless incision was developed utilizing a longer scleral tunnel with linear grooves in the floor of the tunnel in the meridian of the incision. This incision could be stretched to admit the nucleus as well as the implanted IOL and remain unsutured. The corneal entry was described as a one-way valve or corneal lip incision, which enabled the incision to self-seal (**Keener**, **1991**).

Various names have been given to the new technique where the whole nucleus, or the nucleus divided in parts, is removed through a self-sealing tunnel requiring no sutures, e.g.; Small Incision Cataract Surgery (SICS), Manual Small Incision Cataract Surgery (MSICS), Manual Phaco, and Sutureless extracapsular cataract extraction with posterior chamber IOL (ECCE/PC IOL) (Dada et al., 1998).

Aim of work

Is to compare between the postoperative outcomes of cataract extraction performed by conventional ultrasonic phacoemulsification and Sutureless extracapsular cataract extraction in old ages with hard, dense nuclear cataracts in which the ultrasonic phacoemulsification is not preferred, being a much easier, safer and less expensive technique, as regard: postoperative visual acuity, duration of visual recovery, wound healing, postoperative surgically induced astigmatism and effect on the cornea.

Subjects and methods

The subjects of the study will be divided into tow groups:

Group A: 50 eyes who will undergo cataract extraction using conventional ultrasonic phacoemulsification.

Group B: *50* eyes who will undergo cataract extraction using the small incision sutureless- non phaco technique.

Inclusion criteria:

The study will include subjects above the age of 60 years old with dense nuclear cataract (Grade II,III and cataracta nigra) who agree to have surgery and willing to complete the schedule of postoperative follow up included in the study.

Exclusion criteria:

Patients below age of 60 years old and those with congenital or complicated cataract, patients with nuclear sclerosis, faint nuclear(Grade I) or pure posterior subcapsular opacification, glaucomatous patients, patients with any macular or optic nerve disease, patients with corneal dystrophies or any other severe corneal abnormalities affecting the central 6 mm of the cornea, history of chronic ocular inflammations, history of prior ocular surgeries,

frequent users of any eye drops other than preservative free artificial tears, patients with chronic irritative conditions as trichiasis and entropion, distorted or abnormally dilated pupil, patients who develop postoperative posterior capsular opacification affecting their VA unless treated by YAG laser capsulotomy are all excluded.

Preoperative examination will include:

Objective refraction, evaluation of best corrected visual acuity (BCVA), extraocular examination, full slit lamp examination of the anterior segment, measurement of intraocular pressure (IOP), fundus examination corneal keratometry and pachymetry will be done.

Intraoperative clinical data will include:

The procedure performed in cataract extraction, specifications of the IOL used and intraoperative complications.

Postoperative evaluation will include:

Early and late postoperative complications, objective refraction, UCVA and BCVA, extraocular examination, full slit lamp examination of the anterior segment, measurement of intraocular pressure (IOP), fundus examination, corneal keratometry and pachymetry and follow up of wound healing. Evaluation will be held on 1st day, 1 week, 1 month and 3 months postoperative.

All cases in the study will be performed under the effect of local anesthesia and the 3.2mm incision phacoemulsification in group A will be followed by Irrigation and aspiration (I/A) of the cortex then a foldable IOL implantation in the capsular bag, while the 6.5mm corneo-scleral incision in group B will be followed by delivery of the nucleus in the anterior chamber followed by its extraction using an irrigating vectis and sinski, this is followed by I/A of lens cortex and IOL implantation in the capsular bag.

The data will be collected and analyzed statistically and all cases will be done at Ain shams university hospitals.

REFERENCES

Dada T, Sharma N, Vajpayee R and Dada V (1998):

Conversion from phacoemulsification to extracapsular cataract extraction: Incidence, risk factors, and visual outcome.

J Cataract Refract Surg; 24: 1521-24.

Gogate P, Deshpande M, Wormald R (2003):

Is manual small incision cataract surgery affordable in the developing countries? Br J Ophthalmol; 87: 843-6.

Keener G (1991).

Alternative small incision techniques. In: Cataract Surgery; Rozakis G and Anis A (eds.); Thorofare (N.J) Slack Inc; 163-195.

Meisler D, and Mandelbaum S (1992):

Propionibacterium-associated endophthalmitis after extracapsular cataract extraction: review of reported cases.

Ophthalmology; 96: 54.

Shepherd J (1997):

Induced astigmatism in small incision cataract surgery.

J Cataract Refract Surg; 23: 1389-93.

Ruit S, Poudyal G, Gurung R, and Tabin G (2000):

An innovation in developing world cataract surgery: sutureless extracapsular cataract extraction with intraocular lens implantation.

Ophthalmology; 28: 274 - 9.

INTRODUCTION

Various surgical techniques have been used in management of cataract which is still considered the leading cause of reversible blindness worldwide that extraction intracapsular cataract (ICCE). extracapsular (ECCE) extraction and ultrasonic phacocataract emulsification (Shepherd, 1997).

Before the evolution of ultrasonic phacoemulsification extracapsular cataract extraction (ECCE) with intraocular lens implantation was the favorable procedure ,to which the shift from intracapsular cataract extraction technique has produced a dramatic improvement in postoperative visual outcomes, with relatively higher incidence of intraocular infections, slower rate of visual recovery and undesirable higher values of postoperative astigmatism due to the relatively large number of stitches taken compared with phacoemulsification (Meisler et al., 1992).

With the evolution of ultrasonic phacoemulsification cataract extraction became easier and more efficient, with rapid visual recovery, dramatically lower values of postoperative astigmatism and lower incidence of intraoperative and postoperative complications in general when compared with the conventional extracapsular cataract extraction done before (**Shepherd**, **1997**).

However, there are also many disadvantages of ultrasonic phacoemulsification including being a relatively difficult technique with a long learning curve, expensive, high maintenance equipment and disposables required, the non availability of foldable IOLs specially in developing countries and poor populations, wasting the 3 mm incision which is then enlarged to 6 mm if phacoemulsification is done, in addition to the harmful effect of the ultrasound waves on the