Assessment of Vocal fold Changes and their Correlation with Pulmonary Functions in Asthmatic Children

Thesis Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

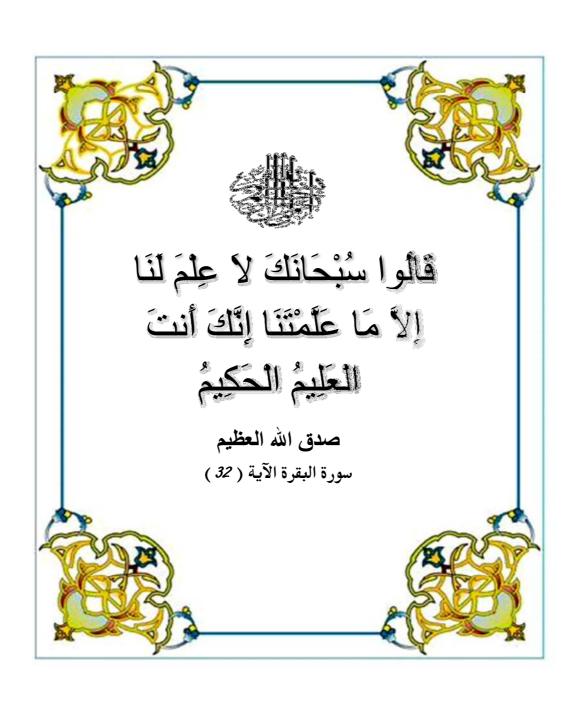
Haidy Ahmed El Desouky

(M.B.B.CH.) EL Azaher University
(2003)

Supervisors

Prof / Eman Ahmed Zaky

Professor of Pediatrics
Faculty of Medicine - Ain Shams University


Prof / Eman Mahmoud Fouda

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Azza Smay Abd Hakeem

Lecturer of Phoniatrics
Speech and Hearing Institute-Imbaba
Phoniatric Depatment

Faculty of Medicine Ain Shams University

Acknowledgment

At first. I would like to thank Allah who gave me the strength to finish this study. I wish to express my deepest thanks and gratitude to My honored Prof / Eman Ahmed Zaky, Professor of Pediatrics Faculty of Medicine, Ain Shams University, for her meticulous supervision, her constant encouragement and constructive guidance that were of paramount importance for the initiation, progress and completion of this study.

My deepest thanks and gratitude go to Prof/ Eman Mahmoud Fouda, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her excellent guidance and powerful support. She gave me a lot of her valuable and experience time to accomplish this study.

I wish to express my deepest thanks to Dr. Azza Smay Abd Hakeem, Lecturer of phoniatrics, Speech and Hearing Institute for her helpful instructions and great support to accomplish investigational part of this study.

I am also deeply grateful and would like to express my sincere thanks and gratitude to my mother who was, and will always be, by my side and without her I would have never been able to accomplish this study.

I wish to express my sincere thanks to the patients and their parents for their cooperation to finish this study.

Haidy Ahmed

List of Contents		
Title	Page No	
List of contents	I	
List of tables	II	
List of figures	VI	
List of abbreviations	IX	
Introduction	1	
Aim of the work	4	
Review of literature	5-112	
Chapter (1): Bronchial asthma	5	
Epidemiology	5	
• Pathogenesis of asthma	18	
• Pathophysiology of asthma	20	
• Management of asthma	34	
Chapter (2):- Inhaled Corticosteriods	51	
Chapter (3):-Comorbid conditions associated with asthma	70	
Chapter (4):-Larynx	98	
Patients and methods	113	
Results	129	
Case Presentations	162	
Discussion	166	
Summary and conclusion	179	
Recommendations	185	
References	186	
Arabic summary		

List of Tables

Number	Title	Page
Table (1)	Triggers of asthma	17
Table (2)	Inflammatory Cells in Asthmatic Airways	22
Table (3)	Inflammatory mediators in asthma	23
Table (4)	The differential diagnosis of bronchial asthma	33
Table (5)	Stepwise Approach for Managing Asthma in Children (≥5 yr of age)	37
Table (6)	Classification of asthma control children (0-4years of age)	38
Table (7)	Classification of asthma control children (5-11years of age).	39
Table (8)	Classification of asthma control chil dren (≥12years of age)	40
Table (9)	Stepwise approach for managing asthma: severity, classification, and management.	43
Table (10)	Asthma Assessment and Treatment for Children Aged (0 to 4 Years)	45
Table (11)	Asthma Assessment and Treatment for Children Aged (5 to 11 Years.)	46
Table (12)	Asthma Assessment and Treatment for Youths Aged (≥12 Years and Adults.)	47
Table (13)	Estimated Equipotent Doses of Inhaled corticosteroids for Children (>5 years)	51
Table (14)	Effect of corticosteroids on gene transcription	53

List of Tables contu.

Table (15)	Techniques to be considered for investigation of asthma-related comorbidities	97
Table (16)	Classification of asthma severity by clinical features and PFTs	115
Table (17)	Statistical comparison between studied groups as regards age (yrs)	129
Table (18)	Statistical comparison between studied groups as regards sex distribution.	129
Table (19)	Classification of asthmatic patients according to asthma severity and grade of asthma control	130
Table (20)	Statistical comparison between studied groups as regards laboratory data and pulmonary functions tests (PFT).	131
Table (21)	Enumeration of Video Laryngoscopic (VLS) abnormalities in studied asthmatic cases	134
Table (22)	Statistical comparison between asthmatic patients with normal and those with abnormal finding in video laryngoscopy (VLS) as regards demographic data: age (yrs), age of onset (yrs), duration of illness, duration of ICS (yrs) and dose of ICS (ug).	136

List of Tables contu.

Table (23)	Statistical comparison between asthmatic patients with normal and those with abnormal finding in	137
	video laryngoscopy (VLS) as regards laboratory results and pulmonary functions.	
Table (24)	Percentage of asthmatic patients with abnormal finding in video laryngoscopy (VLS) as regards severity and control of asthma.	138
Table (25)	Significant comparison between the frequency of abnormal video laryngoscpic findings of different studied groups.	139
Table (26)	Statistical comparison between studied groups as regards Voice analysis parameters.	141
Table (27)	Statistical comparison between asthmatic patients and control groups as regards voice analysis data.	143
Table (28)	Statistical comparison between asthmatic patients not on ICS and asthmatic patients on ICS according to voice analysis data	144
Table (29)	Statistical comparison between asthmatic patients not on ICS and control groups as regards voice analysis data.	145
Table (30)	Statistical comparison between asthmatic patients with normal and those with abnormal finding in Video laryngoscopy (VLS) as regards voice abnormalities	146

List of Tables contu.

Table (31)	Statistical correlation between age and different studied non parametric data in studied cases.	147
Table (32)	Statistical comparison between age of disease onset (yrs) and different studied non parametric data in studied cases.	148
Table (33)	Statistical correlation between duration of illness (yrs) and different studied non parametric data in studied cases	149
Table (34)	Statistical correlation between dose (ug), duration of medication (yrs) and different studied non parametric data in Group I.	150
Table (35)	Statistical correlation between TLC (cell\mm3), and different studied non parametric data in studied cases.	152
Table (36)	Statistical correlation between Eosinophillic count cell\mm3 and different studied non parametric data in studied cases.	153
Table (37)	Statistical correlation between Eosinophillic count %, FEV1 % and different studied non parametric data in studied cases.	154
Table (38)	Statistical correlation between FO (Hz) and different studied non parametric data in studied cases.	156
Table (39)	Statistical correlation between MMEF 25-75 %, FO (Hz) and different studied non parametric data in studied cases.	157
Table (40)	Statistical correlation between Jitt %, Sh (Db), Shim % and different studied non parametric data in studied cases.	159

List of Figures

Number	Title	Page
Figure (1)	Prevalence and mortality from asthma	7
Figure (2)	Changes in the airway in asthma	19
Figure (3)	Pathogenesis of Asthma	20
Figure (4)	Cytokine balance in allergic disease	21
Figure (5)	Diagnosis of bronchial asthma	25
Figure (6)	Algorithm for spirometry interpretation	29
Figure (7)	The goals of asthma management	34
Figure (8)	Triggers of asthma	36
Figure (9)	Treatment algorithm for patients with asthma	41
Figure (10)	Cellular effect of corticosteroids.	54
Figure (11)	Effects of Inhaled corticosteroids on airway epithelial cells.	56
Figure (12)	Corticosteroids Receptors	58
Figure(13)	Pharmacokinetics of inhaled glucocorticosteroid	59
Figure (14)	The standard MDI inhaler (manually actuated).	65
Figure (15)	The standard MDI inhaler (breath-actuated	66
Figure (16)	Breath-activated inhalers	67
Figure (17)	Inhaler with spacer device	68
Figure (18)	Asthma-related co-morbidities	71
Figure (19)	Lateral View of The Upper AirWay	99

List of figures contu.

Figure (20)	Anatomy of the Larynx	101
Figure (21)	Musclesassociated with the larynx	103
Figure (22)	Videostroboscopic view of the larynx	104
Figure (23)	Anatomy of the Vocal Fold	109
Figure (24)	A cross section of a vocal fold.	110
Figure (25)	muscles and cartilage of the Larynex.	111
Figure (26)	Dynamic Spirometry	119
Figure (27)	Kay PENTAX Rhino-Laryngeal Stroboscope system.	120
Figure (28)	Picture of Normal Video Laryngoscopy	121
Figure (29)	Multidimensional Voice Analysis system (MDVP).	122
Figure (30)	Pie chart showing sex distribution among all studied asthmatic	130
Figure (31)	Comparison between asthmatic on ICS (group I) and control as regards eosinophillic count cell\mm3.	132
Figure (32)	Comparison between asthmatic not on ICS (group II) and control as regards FEV1 (% of predicted)	133
Figure (33)	Number of cases with normal and abnormal VLS.	135
Figure (34)	The frequency of abnormal video laryngoscpic findings in all countered groups in comparison to each others.	140
Figure (35)	Comparison between asthmatic children on ICS (group I) and controls (group III) as regreds Fo (Hz).	142

List of figures contu.

<i>Figure (36)</i>	This diagram shows -ve correlation between the	151
	dose of ICS (Ug) and the Fo (Hz) in asthmatic	
	children on ICS (group I).	
Figure (37)	This diagram shows +ve correlation between the	155
	FEV1 % and the Sh (Db) in asthmatic children not	
	on ICS (group II).	
Figure (38)	This diagram shows -ve correlation between the	158
	MFO (Hz) and the A. Jitt (us) in asthmatic children	
	not on ICS (group II).	
Figure (39)	This diagram shows +ve correlation between the Jitt	160
	% and the Shim % in asthmatic children on ICS	
	(group I).	
Figure(40)	This diagram shows +ve correlation between the Sh	161
	(Db) and the NHR in asthmatic children not on ICS	
	(group II)	

List of Abbreviations

A Jitt	Absolut Jitter
ABAS	Allergic Bronchopulmonary Aspergillosis.
B.D	Bronchodilator
BMI	Body Mass Index
B2-receptor	Beta 2- receptor
COPD	Chronic Obstructive Pulmonary Disease
COX	inducible Cyclo-Oxygenase
ECM	Extra Cellular Matrix
EDTA	Ethylene-Diamine-Tetra-Acetic acid
EERD	Extra Esophageal Reflux Disease
ETS	Environmental Tobacco Smoke
FDA	Food, Drug Associations
FEF25-75%	Forced Expiratory Flow rate over 25-75% part of FVC
FEFR	Forced Expiratory Flow Rate
FEV1	Forced Expiratory Volume in first second
Fo	The Average Fundamental frequency
FVC	Forced Vital Capacity
GCRβ	Glucocorticoid Receptor Beta
GERD	Gastro-Esophageal Reflux Disease
GINA	Global Initiative for Asthma
GM-CSF	Granulocyte-Macrophage Colony Stimulating Factor
GR	Glucocorticoid Receptors
HA	Hyaluronic Acid
HDAC2	Histone De ACetylase-2
HDM	House Dust Mites
ICAM	Inter Cellular Adhesion Molecule

List of Abbreviations contu.

ICS	Inhaled Corticosteroid
IgA	Immunoglobulin A
IgE	Immunoglobulin E
IGL	Immune Globulin
IL	Interleukin
IL6R	Interleukin-6 Receptor
iNkT	invariant Natural killer T cells
iNOS	Inducible Nitric Oxide Synthase
iPLA2	inducible Phospho-Lipase A2
IQR	Inter Quartile Range
IU	International Unit
ΙκΒ-α	inhibitor of NF-κB
Jitt %	Jitter Precent
LABA	Long Acting B2 Agonist
LES	Lower Esophageal Sphincter
LLN	Lower Limit of Normal
LPR	Laryngopharyngeal Reflux
LTRA	Leukotriene Receptor Antagonists
MDC	Macrophage-Derived chemokines
MDVP	Multi Dimensional Voice Program
MFo	Mean Fundamental Frequency
MKP-1	Mitogen-activated protein kinase Phosphatase-1
MMEF	Mean Mid Expiratory Flow
mRNA	Messenger RNA
N	Normal
NFkB	Nuclear Factor Kappa B
NHLBI	National Heart, Lung, and Blood Institute
NHR	Noise to Hormonic Ratio

List of Abbreviations contu.

NK	Natural Killer cells
NK1	Neurokinin
NO	Nitric Oxide
O3	Ozone
OSA	Obstructive Sleep Apnea
PBMCs	Polymorph Mononuclear Cells
Pco2	Pressure of carbon dioxide
PEF	Peak Expiratory Flow
PEFR	Peak Expiratory Flow Rate
PFTs	Pulmonary Function Tests
PMDI	Pressurised Meter-Dose Inhaler
RSV	Respiratory Syncytial Viruse
SABA	Short Actining B2 Agonist
SD	Standered Deviation
Sh (dB)	Shimmer decibel
Shim%	Shimmer Precent
SO2	Sulpher dioxide
TARC	Thymus and Activation Regulated Chemokines
Th1	T- Helper 1 Lymphocytes
Th2	T- Helper 2 Lymphocytes
TIF	Transoral Incisionless Fundoplication
TIM1	T-cell Immunoglobulin Mucin 1
TNF-α	Tumor Necrosis Factor-alpha
UK	United Kingdom
VC	Vital Capacity
VFD	Vocal Fold Dysfunction
VF	Vocal Fold
WHO	World Health Organization

INTRODUCTION

Asthma is a chronic inflammatory disease characterized by recurrent attacks of breathlessness and wheezing, which vary in severity and frequency from person to person (*WHO*, 2010). Cellular inflammation of airway with eosinophils and neutrophils is a characteristic feature of asthma and is considered relevant to the pathogenesis of the disease (*Fahy*, 2009).

Asthma is a serious global health problem. People of all ages in countries throughout the world are affected by this chronic airway disorder that, when uncontrolled, can place severe limits on daily life and is sometimes fatal. The prevalence of asthma is increasing in most countries, especially among children. Asthma is a significant burden, not only in terms of health care costs but also of lost productivity and reduced participation in family life (GINA, 2008).

Vocal fold dysfunction (VFD), also commonly known as paradoxical vocal fold motion, can be characterized as an abnormal adduction of the vocal folds during the respiratory cycle (especially during the inspiratory phase) that produces airflow obstruction at the level of the larynx. VFD frequently