Endoscopic Versus Microscopic Transsphenoidal Approach in the Treatment of Pituitary Adenomas

Protocol Submitted For M.D. thesis

By

Mohammed Saleh Mosad Aladashi M.B.B.CH., M.S. (General Surgery)

Under Supervision Of Prof. Dr. Adel Hussein Elhakim

Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Prof. Dr. Magdy Abd-Elazim Othman

Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Prof. Dr. Omar Yousef Hammad

Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Dr. Tarek Lotfy Salem

Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Dr. Mohammed Abdullah Elwardani

Assistant Professor of Neurosurgery Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2013

استخدام المنظار الجراحي بالمقارنه مع الميكروسكوب الجراحي لازالة اورام الغدة النخاميه عن طريق الجيب الاسفيني

رسالة مقدمة من الطبيب/ محمد صالح مسعد العداشي بكالوريوس الطب والجراحة ماجستير الجراحة العامة (جامعة عين شمس)

توطئه للحصول على درجم الدكتوراة في جراحم المخ والاعصاب

تحت اشراف

الأستاذ الدكتور/ عادل حسين الحكيم

أستاذ جراحة المخ والاعصاب ـ جامعة عين شمس كلية الطب ـ جامعة عين شمس

الأستاذ الدكتور/ مجدى عبد العظيم عثمان

أستاذ جراحة المخ والاعصاب ـ جامعة عين شمس كلية الطب ـ جامعة عين شمس

الأستاذ الدكتور/ عمر يوسف حماد

أستاذ جراحة المخ والاعصاب - جامعة عين شمس كلية الطب - جامعة عين شمس

الأستاذ الدكتور/ طارق لطفى سالم

أستاذ جراحة المخ والاعصاب ـ جامعة عين شمس كلية الطب ـ جامعة عين شمس

الدكتور/ محمد عبد الله الورداني

أستاذ مساعد جراحة المخ والاعصاب ـ جامعة عين شمس كلية الطب ـ جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١٣

Acknowledgement

First of all, thanks to **ALLAH**, the most beneficent and most merciful.

I wish to express my sincere appreciation and deepest gratitude to **Prof. Dr. Adel Elhakim,** Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his great support and for his keenness on high standards of performance which was a real encouragement to accomplish this work.

I am greatly honored to express my endless gratitude to **Prof. Dr. Magdy Abdelazim,** Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for being there for me in times of need, for the time he spent, the effort he paid and for his kind guidance every step of the way till this work saw the light.

I wish to express my sincere thanks and infinite indebtedness to **Prof. Dr.**Omer Yousef, Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his kind care, great assistance, continuous support and his meticulous supervision. His suggestions have been of great help.

I would like to express my utmost gratitude and deep appreciation to **Prof. Dr. Tareq lotfy.,** Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his immense effort for planning of this work, patience, continuous guidance, support, constructive criticism through the work and revision of this work. It was a great honor to me to work under his supervision.

I am deeply grateful to **Prof. Dr. Mohammed Elwerdani,** assistant Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his kind help, great interest, continuous supervision and constructive encouragement.

Last, but not least, I am very grateful to **Dr. Hossam Elhoseiny**, head of the departement and all my senior staff and colleagues in the Neurosurgery Department, Faculty of Medicine, Ain Shams University.

Mohammed Saleh Aladashi

Contents

•	Introduction	<i>1</i>
•	Aim of The work	5
•	Literature review:	
	Anatomy of The Sellar Region	6
	• Endoscopic anatomy of the nasal cavity and sphene	oid sinus.17
	• Pathophysiology	22
	• Clinical Presentation	41
	• Investigation	49
	Treatment Modalities	65
•	Clinical Materials and Methods	86
•	Illustrative cases	104
•	Results	116
•	Discussion	136
•	Summary & Conclusion	162
•	References	165
•	Arabic Summary	176

List of Figures

No.	o. Figure	
1	Diagram of the sagital section of the pituitary gland and some of its important anatomical features.	6
2	Schematic illustration of the cavernous sinus in axial section.	
3	Sagittal sections of the sellar region showing variations in the intercavernous venous connections	9
4	Sagittal sections (left) and superior views (right) of the sellar region showing the optic nerve and chiasm, and carotid artery.	11
5	Types of sphenoid sinus.	12
6	Multiseptated sphenoid sinus and the anterior wall of the sella.	13
7	Sagittal section to the left of the midline and nasal septum.	14
8	The lateral wall of the nasal cavity.	15
9	Sagittal paramedian skull section, lateral nasal wall	16
10	Endoscopic View through the right nostril.	17
11	Widened sphenoid ostium allowing for inspection of sinus cavity.	19
12	2 Sphenopalatine artery.	
13	Endoscopic view of the posterior wall landmarks of the sphenoid sinus.	21
14	Adenohypophysial cytogenesis.	24
15	Distribution of different pituitary cell types within the adenohypophysis.	24
16	Hypothalamic-pituitary regulation.	27

17	Intraoperative photographs showing the adenoma has been removed by using the histological pseudocapsule as a surgical capsule	28
18	Photomicrographs showing several layers of compressed reticulin surrounding the margin of the tumor	
19	CT scans of nasal cavities and paranasal sinuses coronal cuts.	
20	Normal MRI Sella sagittal and coronal cuts.	56
21	Dynamic and standard coronal image of a microadenoma in the same patient.	
22	MRI evaluation of pituitary macroadenoma.	
23	Hardy's classification of pituitary adenoma.	
24	The KNOSP Classification	
25	Gamma plan software depiction	
26	Long and short endoscopes with their irrigation sheath to the right.	
27	The endoscope camera	
28	Lt. view of left nostril showing middle and superior turbinate, Rt. View of Rt nostril showing widened sphenoid ostium.	92
29	Lt. drilling the inferior part of the sphenoid sinus, Rt. Left side of the sphenoid sinus showing sphenoid septa, sellar bulge and Lt carotid bulge	
30	View of the sphenoid sinus showing sellar bulge, sphenoid septum, planum spenoidal, clivus, Lt carotid protuberance, Lt optic protuberance and opti-carotid reses	
31	Pealing the sphenoid mucosa covering the sellar pulge.	96

32	View showing the dura after opening the sellar floor	97
33	Opening the dura in T-shape incision after cauterizing it	98
34	Extra capsular dissection of the tumor	100
35	Gender distribution in both groups.	116
36	Diagnosis in both groups	117
37	Grade differences between both groups.	120
38	Stage differences in both groups.	
39	Knosp differences in both groups.	122
40	Comparison in rate of excision in both groups.	123
41	Overall improvement in both groups.	126
42	Headache improvement in both groups.	131

List of Tables

No.	Table		
1	Clinicopathologic classification of pituitary adenomas.	32	
2	Indications for transcranial pituitary surgery		
3	Age and gender distribution among the 2 groups	116	
4	diagnosis in both groups	117	
5	Comparison between both study groups as regard presenting symptom.	118	
6	Grade differences between both groups.	119	
7	Stage differences in both groups.		
8	Knosp differences in both groups		
9	Comparison in rate of excision in both groups.		
10	Comparison in rate of excision in both groups in relation to Grade.	124	
11	Comparison in rate of excision in both groups in relation to Stage.	125	
12	Comparison in rate of excision in both groups in relation to knosp.	125	
13	Overall improvement in both groups.	126	
14	Improvement in relation to functioning and nonfunctioning in both groups.	128	
15	Visual improvement in both groups.	130	
16	Visual field improvement in both groups.		
17	Headache improvement in both groups.		
18	Operative time comparison.	132	

19	Blood loss comparison.	132
20	CSF leak in both groups.	134
21	DI complication in both groups.	134

List of Abbreviations

3 D	Three Dimensional
ACTH	Adrenocorticotropin Hormone
CCD	Charge Coupled Devices
CRH	Corticotropin Releasing Hormone
CS	Cavernous Sinus
CSF	Cerebro Spinal Fluid
CT	Computerized Tomography
D2	Dopamine 2
ENT	Ear Nose And Throat
FEPS	Functional Endoscopic Pituitary Surgery
FSH	Follicle Stimulating Hormone
GH	Growth Hormone
GnRH	Gonadotropin Releasing Hormone
GHRH	Growth Hormone Releasing Hormone
HD	High Definition
HE	Hematoxylin–Eosin
ICA	Internal Carotid Artery
IGF-1	Insulin Growth Factor 1
IPSS	Inferior Petrosal Sinus Sampling
IRMA	Immunoradiometric Assay
LCD	Light Coupling Diode
LH	Luteinizing Hormone
MEN	Multiple Endocrine Neoplasia
MIB-1	Mindbomb Homolog 1

MRI	Magnetic Resonance Imaging
NFA	Clinically Nonfunctioning Adenoma
OGTT	Oral Glucose Tolerance Test
PAS	Periodic Acid–Schiff
PRL	Prolactin
RER	Rough Endoplasmic Reticulum
T4	Free Thyroxin
TFT	Thin Film Transistor
TRH	Thyrotropin Releasing Hormone
TSH	Thyroid Stimulating Hormone
UFC	Urinary Free Cortisol
VEP	Visual Evoked Potentials
WHO	World Health Organization

Introduction

The pituitary gland is comprised of anterior and posterior lobes. The gland secretes eight peptide hormones, two from the posterior lobe and six from the anterior lobe. It rests in the sella turcica, a saddle-shaped concavity of the sphenoid bone. The optic nerves, chiasm and tract lay just above the diaphragma sella, through which passes the pituitary stalk. The cavernous venous sinuses, the medial wall of which form the lateral walls of the sella, contain the IIIrd, IVth and VIth cranial nerves, the ophthalmic and maxillary divisions of the trigeminal nerve, and the internal carotid arteries (*Thapar K etal*, 2004).

Pituitary tumors (adenomas) arise primarily from the anterior pituitary gland (adenohypophysis), and may be classified by a number of schemes, including: by endocrine function, by light and electron microscopic appearance and radiological picture (*Thapar K etal, 2004*). Clinically, pituitary tumors usually present either due to endocrinologic disturbance, or due to mass effect. Pituitary macroadenoma may produce headache. A small number present with pituitary apoplexy, rarely invasive adenoma may present with CSF rhinorrhea (*Asa SL, etal, 2009*).

For patients in whom a pituitary adenoma is suspected a coordinated two step diagnostic approach is required. The first step involves establishing an endocrine diagnosis, and the second is securing an anatomic diagnosis (*Thapar K etal, 2004*). Assessment of pituitary function requires clinical evaluation of hormonal deficiency or excess and laboratory testing of the various pituitary target organ axes. Endocrine evaluation confirms endocrinopathy, defines it, help establish the etiology and assess the effect of treatment (*Oyesiku, 2005*).

The anatomic diagnosis is now provided by high-resolution, gadolinium-enhanced MRI. In certain circumstances, extracranial imaging may be required to secure the correct anatomic diagnosis and exclude an ectopic hormone-secreting tumor in the chest, abdomen, or retro- peritoneum and confirm pituitary dependant source of hormonal excess (*Thapar K etal*, 2004).

Although new therapeutic agents have been introduced which can control hormonal symptoms and may slow or stop the growth of some functioning adenomas; medical therapy, however, is still frequently unsuccessful for patients suffering from acromegaly, and no effective therapy is available for patients with Cushing's disease. Moreover, some patients may not tolerate the side effects of these medications, have hormonal tumors resistant to treatment, or follow-up MRI scans demonstrating continued tumor growth. In addition, non-functioning pituitary adenomas typically do not respond to pharmacological interventions, and present as macro-adenomas with symptoms of visual disturbance or hormonal deficiencies due to compression of the adjacent neurovascular structures. Stereotactic radiosurgery has been added to the list of available treatment options, but this therapy often fails to completely control tumor growth or reduce hormone levels (Kabil MS, etal, 2005).

The evolution of pituitary surgery during the last century is characterized by the development of progressively less invasive approaches to the pituitary gland that have been facilitated by simultaneous advances in medical technology. The fundamental tendency to be as minimally invasive as possible with a minimum of iatrogenic traumatization and to achieve a maximum of efficiency in the treatment of a patient has existed since the beginning of surgery. The development of unconventional or

"difficult approaches", which is based on increased knowledge of microsurgical anatomy, improved preoperative diagnostic techniques, and well-adapted microsurgical instruments, definitely forms one important aspect of "refinement in microneurosurgical operating" (*Wongsirisuwan M, etal, 2004*).

In the last 10 years the endoscopic endonasal transsphenoidal approach has been proposed as a minimally invasive procedure for the treatment of pathologies of the sellar (Cappabianca P. etal. *2004*). Endoscope-assisted transsphenoidal operations refer to microscopic procedures in which the endoscope is used as an adjunct to the microscopic removal of a tumor. The manner in which the endoscope is used adjunctively, however, can vary significantly. The endoscope may simply be used to perform an anterior sphenoidotomy prior to inserting the nasal speculum and using the microscope. The endoscope may also be used during the microscopic tumor resection to inspect for areas of tumor residue out of the line of sight of the microscope (Jane JA, et al, 2005).

The refinement of minimally invasive endoscopic techniques has resulted in 'pure' endoscopic endonasal transsphenoidal surgery, which is a new approach for the removal of pituitary tumors. This procedure is performed via a wide anterior sphenoidotomy with detachment of the septum from the sphenoid face, and avoids the use of a transsphenoidal retractor and any intraoral or nasal incisions. Straight and angled endoscopes are used throughout the procedure to provide a wide view of the sella and are manipulated by a co-surgeon (*Rosen MR*, *etal*, *2006*).

For the most of pituitary adenoma; surgery is done by a transsphenoidal approach, while some of them are still done by a craniotomy, according to the tumor size, locations and symptoms (*Kuroki A, etal, 2003*). Many different approaches for treating

lesions in the anterior fossa or sellar region have been described. Improvements in microsurgical techniques and instruments, such as the use of endoscopy and neuronavigation, have made keyhole exposure for cerebral surgery possible. The effects of keyhole surgery are less traumatic, preserving cerebral integrity as much as possible, while limiting brain exposure. The supraorbital approach is a typical approach for keyhole surgery applied to anterior cranial fossa lesions (**Zhang MZ**, etal, 2004).