New Advances in Magnetic Resonance Imaging of Prostate Cancer

ESSAY

Submitted for partial fulfillment of master degree in Radiology

BY

Mohamed Samy Said El-Azab M.B., B.CH. Cairo University

Supervisors

PROF. SAMEH ABDEL-AZIZ ZAKY HANNA

Professor of Diagnostic Radiology Faculty of Medicine Cairo University

PROF. MAHA HUSSEN HELAL

Professor of Diagnostic Radiology N.C.I Cairo University

DR. Naglaa Mohamed Abdel Razek

Assist. Professor of Diagnostic Radiology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2008

ABSTRACT

Prostate carcinoma is the second most frequent cause of cancer-related death in men. MR imaging, with T2-weighted scans, MR spectroscopy, dynamic contrast enhancement and diffusion weighted imaging is seen as a method that can improve prostate cancer detection, characterization, staging, and treatment follow-up.

Key word:

(New Advances - Magnetic Resonance Imaging - Prostate Cancer)

CONTENTS

		Page
•	Acknowledgement	3
•	List of figures	5
•	List of tables	8
•	List of abbreviations	9
•	Introduction	11
•	Aim of work	15
•	Chapter 1:	
	- Anatomy	16
	- Pathology	28
•	Chapter 2:	
	- Endorectal MR imaging	43
	- MR Spectroscopic imaging	55
	- Diffusion weighted imaging	72
	- Dynamic contrast enhancement	79
	- 3 Tesla MR imaging	89
	- Post biopsy hemorrhage	92
	- Post treatment follow up	96
	- MRI guided intervention	107
•	Reprsentive Cases	115
•	Summary	118
•	Summary in Arabic	121
•	References	123

ACKNOWLEDGMENTS

I wish to express my great indebtedness and deep gratitude to *Prof. Dr. Sameh Abdel-Aziz Zaky Hanna*, Professor of Diagnostic Radiology, Faculty of Medicine, Cairo University for accepting the idea of this work, his kind assistance and efforts, which helped me in accomplishing this thesis.

I also extend my thanks and appreciation to *Prof. Dr. Maha Helal*, Professor of Diagnostic Radiology, National Cancer Institute, Cairo University for her invaluable guidance and great help in supervising this work. No words can express my feelings, respect and gratitude to her as regards her continuous encouragement and constructive criticism given to me at every stage of this work.

My profound thanks and sincere appreciation goes to *Dr*. *Naglaa Abdel Razek*, Assistant professor of diagnostic radiology, Faculty of Medicine, Cairo University. Without her patience and guidance I would not have proceeded efficiently with this work.

I would like to record my utmost appreciation to *Prof. Dr. Moharam EL-Badawy*, Head of Radiology Department,

National Cancer Institute, Cairo University for his great interest and encouragement.

I also want to thank *Prof. Dr. Ikram Hamed*, Professor of Diagnostic Radiology, National Cancer Institute, Cairo University for his great encouragement.

I also want to thank *Prof. Dr. Alaa El-Orabby*, Professor of Diagnostic Radiology, National Cancer Institute, Cairo University for his great support.

I would also like to thank the staff members of the Radiology department at the faculty of Medicine Cairo University, for accepting my work and affirming its eligibility.

Someone who I should never forget is *Prof. Dr. Hussein Khairy*, Professor of Surgery, Faculty of Medicine, Cairo

University who really gave me good support.

To all my family and my fiancée, to whom I am overwhelmingly indebted to, thank you and GOD bless you.

LIST OF FIGURES

FIGURES

OPPOSITE PAGE

FIG. 1 (Anatomy of the male pelvis)	17
FIG. 2 (Lobar and zonal anatomy of the prostate)	18
FIG. 3 (Coronal and sagittal plane of the prostate)	22
FIG. 4 (Arterial Supply of the Prostate)	24
FIG. 5 (Venous Drainage of the Prostate)	24
FIG. 6 (Normal prostate zonal anatomy)	26
FIG. 7 (Axial T2 WI showing Lt NVB)	27
FIG. 8 (TNM staging of prostate cancer)	39
FIG. 9 (MRI image and drawings show division of prostate into sextants) 47
FIG. 10 (Axial, sagittal and coronal T2 showing Rt PZ tumor)	48
FIG. 11 (Axial T2 WI showing extra-capsular extension of tumor)	49
FIG. 12 (Axial T2 WI showing seminal vesicle invasion of tumor)	5 0
FIG. 13 (Axial & sagittal T2 WI showing direct invasion of the urinary	
bladder)	51
FIG. 14 (Axial and sagittal T2 WI showing direct invasion of the urinary	7
bladder and rectum)	51
FIG. 15 (Feromuxtran enhanced T2* gradient WI showing LNs)	52
FIG. 16 (Relation between MR signal and tumor aggressiveness)	54
FIG. 17 (MR Spectroscopy of normal prostate gland)	58
FIG. 18 (3D MRSI spectra demonstrate metabolic differences between	
normal zonal anatomy)	59
FIG. 19 (Axial T2 WI and MRS of BPH)	60
FIG. 20 (Axial and coronal T2 WI and MRS of prostate cancer)	61
FIG. 21 (CART-based decision- making tree for voxel-by voxel analysis	of
MR spectroscopic imaging data.)	62
FIG. 22 (MRS showing standardized 5 point scale)	63
FIG. 23 (Axial T2 WI and MRS showing LT PZ hypointense lesion (Sco	re
5))	64
FIG. 24 (Axial T2 WI and MRS showing tumor in the TZ)	68
FIG. 25 (Axial T2 WI and MRS showing glandular and stromal BPH)	68
FIG. 26 (MRS showing different histological categories)	69
FIG. 27 (Axial T2 WI and MRS showing HGPIN)	70
FIG. 28 (Axial T2 WI and MRS showing directed voxel guided Biopsy)	71
FIG. 29 (DWI and ADC map showing normal prostate)	73
FIG. 30 (DWI and ADC map showing BPH)	74

FIG. 31 (DWI and ADC map showing two hypointense focal lesions)	75
FIG. 32 (DWI and ADC map showing left PZ hypointense focal lesion)	76
FIG. 33 (Combined DWI and MRS of the prostate)	77
FIG. 34 (Color coded scheme of dynamic contrast enhancement)	82
FIG. 35 (Comparison of concentration versus time curve)	83
FIG. 36 (Combined axial T2 WI and dynamic contrast enhanced showir	ıg
left apex lesion)	84
FIG. 37 (Combined axial T2 WI and dynamic contrast enhanced color	
coded based showing right PZ lesion)	85
FIG. 38 (Axial T2, T1 before & after contrast injection and color coded	
image showing right PZ lesion)	86
FIG. 39 (Axial T2 WI and color coded four contrast enhancement	
parameters)	87
FIG. 40 (Axial T2 WI and color coded dynamic contrast enhancement	
showing right PZ lesion with ECE)	88
FIG. 41 (Axial and coronal T2 WI acquired with torso phased array coil	at
3T)	89
FIG. 42 (Axial T2 WI acquired with torso phased array coil at 3T and	
corresponding image acquired with combined endorectal and body phase	ed
array coil at 1.5T)	90
FIG. 43 (Axial T2 WI acquired with body array coil at 3T and	
corresponding image acquired with combined endorectal and body phase	ed
	91
FIG. 44 (Axial T2 WI acquired with body array coil at 3T and	
corresponding image acquired with combined endorectal and body phase	ed
array coil at 3T showing cancer focus in the central gland)	92
FIG. 45 (Axial T1 and T2 WI showing diffuse postbiopsy changes less to	
14 days after biopsy)	93
FIG. 46 (Axial T1 & T2 WI & MRS showing bilateral postbiopsy change	
	94
FIG. 47 (Axial T2 WI & MRS showing right PZ post biopsy hemorrhag	
TIC 40 (1 1 TH TO WE DAY)	95
FIG. 48 (Axial T1, T2 WI, DWI and dynamic MR images showing post	
biopsy hemorrhage)	96
FIG. 49 (Axial T2 WI showing recurrence after radical prostatectomy)	97
FIG. 50 (Axial T2 WI showing recurrence after radical prostatectomy)	97
FIG. 51 (Axial T2 WI showing recurrence after radical prostatectomy)	98
FIG. 52 (Axial T2 WI showing recurrence after radical prostatectomy)	98
FIG. 53 (Axial T2 WI & MRS showing recurrence in left hemiprostate)	-
radiation therapy)	99
FIG. 54 (Axial T2 WI showing radiation therapy seeds)	102
FIG. 55 (Axial T2 WI showing radiation therapy seeds)	102
FIG. 56 (Axial T2 WI showing radiation therapy seeds)	103

FIG. 57 (Axial T2 WI showing radiation therapy seeds)	103
FIG. 58 (Axial T2 WI showing radiation therapy seeds)	103
FIG. 59 (Axial T2 WI showing radiation therapy seeds)	103
FIG. 60 (Axial T1 WI post contrast enhancement post cryosurgery)	104
FIG. 61 (Axial T1 WI post contrast enhancement post cryosurgery)	104
FIG. 62 (MR spectrum post cryosurgery)	105
FIG. 63 (Axial T2 and MRS post hormonal treatment)	106
FIG. 64 (MR guided biopsy device)	108
FIG. 65 (MR images showing MR imaging guided biopsy)	109
FIG. 66 (Transverse MR images showing MRI guided galvanotherapy)	112
FIG. 67 (Transverse MR images showing pretherapy and posttreatment	
follow up)	113
FIG. 68 (Transverse MR images showing pretherapy and posttreatment	
follow up)	114

LIST OF TABLES

TABLES	PAGES
Table (1) (The make up of prostatic zones)	18
Table (2) (TNM staging of prosate cancer)	28
Table (3) (MRI protocol)	46
Table (4) (Extra-capsular Extension Criteria on MR Images)	49
Table (5) (Seminal Vesicle Invasion Criteria on MR Images)	50
Table (6) (Resonance of MR spectroscopy of prostate)	57
Table (7) (Statistical Analysis Results of T2-WI, Dynamic Contra Enhanced MRI, and Both Sequences Combined for the Detection Cancer.)	
Table (8) (Criteria for Extracapsular Extension and Seminal Vesi Invasion for T2-weighted MR Images and Fused T2-weighted Par MR Images.)	
Table (9) (Differences in Prostate Cancer Detection among Diffe Imaging Methods)	rent MR 95

LIST OF ABBREVIATIONS

3D Three Dimensional

3D MRSI Three Dimensional Magnetic Resonance Spectroscopy Imaging

AAH Atypical Adenomatous Hyperplasia **ADC** Apparent diffusion coefficient

AUC Area under the receiver operating characteristic curve

BAC Body-array coil

BASING Band-selective inversion with gradient dephasing

BPH Benign Prostatic Hyperplasia

C/C *Choline to creatine*

CART Classification and regression tree CC/C Choline-creatine—to-citrate ratio

CG Central gland

Cho Choline

CI Confidence interval

Cit Citrate
Cr Creatine
CZ Central Zone

DCE MRI Dynamic Contrast Enhanced Magnetic Resonance Imaging

DRE Digital rectal examination

DW Diffusion weighted

ECE Extra Capsular Extension

En MRI Endorectal coil Magnetic Resonance Imaging

ERC Endorectal coil
FDG Fluorodeoxyglucose
FLASH Fast low-angle shot

FOV Field of view FSE Fast Spin Echo

GRASS Gradient-recalled acquisition in the steady state **HGPIN** High-grade prostatic intraepithelial neoplasia

LN Lymph Node

LNM *Lymph node metastasis*

Lt Left Min Minute

MIPMaximum intensity projectionMRIMagnetic Resonance Imaging

MRSI Magnetic Resonance Spectroscopy Ima

NPV Negative predictive value NVB Neurovascular Bundle

OCPC *Organ confined prostate cancer*

PA Polyamine

PACS Picture archiving and communication system

PCa Prostate Carcinoma

PIN Prostatic Intraepithelial Neoplasia

PNI Perineural invasion
PPA Pelvic phased array
PPV Positive predictive value
PRESS Point resolved spectroscopy
PSA Prostatic Specific Antigen

PZ Peripheral Zone RF Radiofrequency

ROC Receiver operating characteristic

ROI Region of interest

Rt Right
SE Spin echo
Sec Seconds

SI Signal intensity

SNR Signal-to-noise ratio

STEAM *Stimulated echo acquisition mode*

SUV Standardized uptake value

SV Seminal vesicle

SVI *Seminal vesicle invasion*

TE Echo time

TEIff Effective Echo time
TIC Time Intensity Curve

TR Repetition time.

TRUS Transrectal Ultrasound

TZ Transitional Zone

INTRODUCTION

Carcinoma of the prostate is an important health problem (Engelhard et al, 2000).

Prostate carcinoma is the second most frequent cause of cancerrelated death in men. The increase in the number of the aged, as well as the advent and the ever more frequent use of the prostate-specific antigen serum test for detection, has resulted in an increase in prostate cancer incidence. (*Fütterer et al.*, 2005)

The major goal for prostate cancer imaging in the next decade is more accurate disease characterization through the synthesis of anatomic, functional, and molecular imaging information. (*Hricak et al.*, 2007)

Localization of prostate cancer is important given the emergence of disease- targeted therapies, such as intensity- modulated radiation therapy, interstitial brachytherapy, and cryosurgery, as part of patient care. Knowledge of the tumor location within the prostate can help direct maximal therapy to the largest focus of tumor while minimizing damage to the surrounding structures, such as the neurovascular bundles, the rectal wall, and the neck of the bladder. (*Haider et al.*, 2007)

It is unfortunate that there is no single imaging method that embodies all of the optimal characteristics for the integration of diagnostic and interventional procedures for prostatic cancer detection and staging. (Atalar and Menard, 2005

These modalities are ultrasound based (including color Doppler Ultrasonography, ultrasound contrast agents, and harmonic ultrasound

imaging), MR based including (dynamic MR contrast imaging, MR spectroscopy and Diffusion weighted MR imaging). (*Oyen*, 2003).

Routine tools for early diagnosis and localization of cancer within the prostate include digital rectal examination and assessment of serum prostate-specific antigen followed by transrectal ultrasonographically (US) guided biopsy. (*Testa et al.*, 2007)

TRUS being widely applied can provide a complete overview of the prostatic zonal anatomy as well as that of the bladder and seminal vesicles. Hence, visualization and sometimes diagnostic information on many pathological conditions of the prostate. (*Patel and RicKards*, 2002).

However, ultrasound techniques suffer from several disadvantages e.g. being subjective, nonspecific and inaccurate in staging. (*Oyen*, 2003).

The sensitivity of systematic sextant ultrasonography (US)-guided biopsy for prostate cancer detection is low (39%–52%) because more than 40% of prostate cancer lesions are isoechoic and central gland tumors are difficult to detect. Use of magnetic resonance (MR) imaging may result in higher localization rates. (*Fütterer et al.*, 2006)

Magnetic resonance (MR) imaging has shown great promise as a noninvasive diagnostic tool in the evaluation and management of prostate cancer. By aiding in the detection, localization, and staging of prostate cancer, multiplanar T2-weighted endorectal MR imaging can facilitat more appropriate treatment selection and planning. However, for distinguishing prostate cancer from nonmalignant tissue, T2-weighted

MR imaging has high sensitivity but low specificity. To further improve the specificity and sensitivity of MR imaging, functional MR imaging techniques such as three dimensional (3D) hydrogen 1 (1H) MR spectroscopic imaging, dynamic contrast material enhanced MR imaging, and diffusion-weighted imaging have been proposed. (*Mazaheri et al.*, 2008)

Furthermore, MRI has been used for follow-up of prostate cancer after irradiation therapy, hormonal ablation, and cryosurgery. (*Graser et al.*, 2007)

Previous studies involving the use of T2-weighted imaging revealed accuracies of 67%–72% in tumor localization. (*Fütterer et al.*, 2006)

Metabolic information from 3D 1H MR spectroscopic imaging has been shown to improve tumor localization and volume estimation with MR imaging and to provide valuable information about the aggressiveness of prostate cancer. (*Mazaheri et al.*, 2008)

The addition of MR spectroscopic imaging has resulted in a 90% positive predictive value for the sextant localization of tumors in the peripheral zone of the prostate gland. (*Fütterer et al.*, 2006)

The addition of diffusion- weighted imaging to conventional T2-weighted MR imaging has been found to improve the detection of prostate cancer. (*Mazaheri et al.*,

Dynamic contrast material—enhanced MR imaging is reported to be an effective tool in visualizing the pharmacokinetics of gadolinium