Anesthesia and eye safety

Essay submitted for partial fulfillment of master degree in ophthalmology in anesthesia

By

Omnia Fouad Abd-El Dayem
M.B.,B.CH

Supervised by

Prof. Dr. Ashraf Radee Aswa

Professor of Anesthesia , Faculty of Medicine
Cairo University

Ass. Prof. Dr. Ahmad Abdel-Azeez Aref

Assistant Professor of Anesthesia , Faculty of Medicine Cairo University

Ass. Prof. Dr. Mona Raafat Fahim

Assistant professor of Anesthesia, Research Institute of Ophthalmology

> Faculty of Medicine Cairo University 2009

Acknowledgement

I would like to express my deepest gratitude, thanks and gratefulness to **Prof. Dr. Ashraf Radee Aswa**, Professor of Anesthesia, Faculty of Medicine, Cairo University, for his enthusiastic support, continuous encouragement.

I am very grateful to Ass. Prof. Dr. Ahmad Abdel-Azeez Aref, Assistant Professor of Anesthesia, Faculty of Medicine, Cairo University, for his kind supervision.

Many thanks, and sincere gratitude to Ass. Prof. Dr. Mona Raafat Fahim Assistant professor of Anesthesia, Research Institute of Ophthalmology for her kind supervision, encouragement and meticulous revision of this work.

التخدير وسلامة العين

رسالة للحصول على الماجستير

مقدمة من

الطبيب/امنية فؤاد عبد الدايم

تحت اشراف

الاستاذ الدكتور/اشرف راضى عصوة

استاذ التخدير كلية الطب جامعة القاهرة

الاستاذ الدكتور/ احمد عبد العزيز عارف

استاذ م. التخدير كلية الطب جامعة القاهرة

الاستاذ الدكتور/منى رأفت فهيم

أستاذم. التخدير معهد بحوث امراض العيون

كلية الطب جامعة القاهرة ٢٠٠٩

List of Figures

Figure	Subject	Page
Figure 1	Diagrammatic representations of the	
	angles of the lateral and medial walls	
	of the orbits in transverse section	7
Figure 2	The optic nerve and associated	
	structures in detail. Structures	
	involved with aqueous humor	
	production and drainage	10-11
Figure 3	Diagrammatic representation of the	
	parasagital view of the orbit	13
Figure 4	Illustration of the actions of the extra-	
	ocular muscles	14
Figure 5	Nerves within the right orbit	19
Figure 6	Schematic representation of the	
	ophthalmic artery and its branches	
	within the orbit	20
Figure 7	Parasagital section through the	
	eyelid	22
Figure 8	Section of the human retina	25
Figure 9	The ophthalmic artery branches into	
	the posterior ciliary arteries and the	
	central retinal artery	30
Figure 10	The blood supply to the optic nerve	32
Figure 11	The fluorescein angiograms obtained	
	from patients	33
Figure 12	Halothane alters retinal and choroidal	
	blood flow	38
Figure 13	blood flow	
	central retinal arterial occlusion	65
Figure 14	Funduscopic images showing the	
	time course of changes in anterior	
	ischemic optic neuropathy (AION)	66

List of Tables

Table:	Subject:	Page:
Table 1	Summary of the sensory nerve supply of the eye	17
Table 2	Eye care routines and post operative ophthalmic complications	53
Table 3	Differential Diagnosis: Eye Examination in Retinal, Optic Nerve, or Visual Cortex Injury	59
Table 4	Summary of case reports on perioperative ischemic optic neuropathy and retinal vascular occlusion	70-71

List of Contents

Subject:	Page
Introduction	1
Anatomical and Physiological protection of the eye	
Hazard and safety of the eye under regional anesthesia	
Hazard and safety of the eye under general anesthesia	
Summary	123
Conclusion	126
References	127
Arabic summary	

List of Abbreviations

AION ... **A**nterior ischemic optic neuropathy

CBV Choriodal blood volume

CHF..... Congestive heart failure

CRAO... Central retinal artery occlusion,

BRAO... Branch retinal artery occlusion

CSF Cerebro-spinal fluid

CT...... Computerized tomography

ERG **E**lectroretinography

ION..... Ischemic optic neuropathy

IOP Intraocular pressure

LGN Lateral geneculate nucleus

MAC Minimum alveolar concentration

MRI Magnetic resonance imaging

ON..... Optic nerve

ONH.....Optic nerve head

PCA Posterior cerebral arteries

PION.... Posterior ischemic optic neuropathy

RAO..... Retinal artery occlusion

CRA Central retinal artery

CRV Central retinal vien

TURP .. Transurethral resection of the prostate

VEP..... Visiual evoked potential

Introduction

The eye is very different from other organs in its blood supply, nerve supply and other anatomical and physiological considerations. It is supplied by four out of ten cranial nerves and its representation and relation to many cerebral areas along with its delicate and unique structure makes us appreciate its importance in supplying one of the special senses.

Although in its creation it is well protected anatomically and physiologically, but this essay will try to shed more light on the hazards and risks the eye is subjected to under anesthesia and recommendations to prevent them through detailed information and recent studies. Hoping in this way to help prevent harm such an important organ during performance of any type of surgery.

Chapter (1)

➤ Anatomical and Physiological Protection of the Eye:

The cornea:

As light enters the eye, it first passes through a lubricating tear film that coats the cornea. The clear cornea covers the front of the eye and helps to focus incoming light.

The aqueous:

After light passes through the cornea it travels through a clear, watery fluid called the aqueous humor. The aqueous humor circulates throughout the front part of the eye, maintaining a constant pressure inside the eye.

The iris:

The iris is the colored part of the eye. As light conditions change, the iris may dilate to make the pupil bigger or constrict to make the pupil smaller. This allows more or less light into the eye.

The lens:

After light travels through the pupil, it must pass through the lens. The human lens, much like the lens of a camera, is responsible for focusing light. The lens can change its shape to focus on nearby and distant objects. (*Johnson*, 1995).

Chapter (1)

The vitreous:

After being focused by the lens, light passes through the center of the eye on its way to the retina. The eye is filled with a clear, jelly-like substance called the vitreous.

The retina:

The retina is a thin, light-sensitive tissue lining the back of the eye that acts much like film in a camera. Light must be properly focused onto the retina, and the surface of the retina must be flat, smooth, and in good working order to produce a clear image. (*Johnson*, 1995).

The retinal vessels:

The retinal blood vessels nourish the inner layers of the retina.

The macula:

The center of the retina is called the macula. The macula contains a high concentration of photoreceptor cells which convert light into nerve signals. Because of the high concentration of photoreceptors, we are able to see fine details such as newsprint with the macula. At the very center of the macula is the fovea, the site of our sharpest vision.

The choroid:

Behind the retina, a layer of blood vessels called the choroid supplies oxygen and nutrients to the outer layers of the retina.

The sclera:

The white part of the eye is called the sclera. The sclera is composed of tough, fibrous tissue that protects the inner workings of the eye.

The optic nerve:

It is unique anatomically as it is the only tract in the CNS to leave the cranial cavity. Furthermore, it is subdivided into fascicles by connective tissue and glial septae and is surrounded by cerebrospinal fluid. Also it is the only tract to be visualized clinically. .(*Johnson*, 1995).

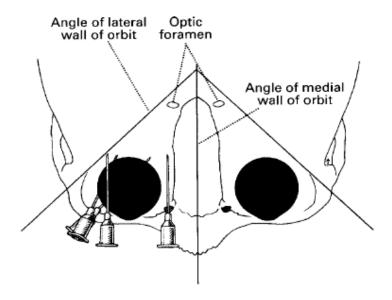
*Anatomy for regional ophthalmic anaesthesia:

Detailed study of the orbit, its contents and surrounding structures allows the anaesthetist to understand how to insert needles within the orbit.

Local anaesthetics may thereby deposited in site where they may spread to block sensory and motor nerves to provide anaesthesia and akinesia without damaging the globle, blood vessels, lacrimal apparatus, muscles or the optic nerve and its coverings. (Johnson, 1995).

The bony orbit:

Direct observation of the human skull provides the most valiable information on the pathway that a straight needle must follow, and the depth to which it may be inserted, to achieve a desired result. Each subject differs and observation of individual soft tissue and bony characteristics is essential. The diamensions of the globe also varies (e.g a large, shortsighted eye) and ultrasound biometry, performed routinely before cataract surgery, provides this dimension. The axial length (usually marked AL) is the dimention from the external corneal surface to the retina. Axial length of 26 mm or more denote a large eye, dictating that caution should be exercised to avoid globe puncture (*Atkenhead et al.*, 2007).


Each orbit is an irregular pyramid in shape with its base forming the orbital opening. Its axis is directed posteriomedialy towards the apex. The triangular roof is composed of the orbital plate of the frontal bone with a small portion of the lesser wing the sphenoid bone posteriorly. At the posterior end is the optic foramen, which is the orbital opening of the optic canal.

The lateral wall is formed from the zygomatic bone and the greater wing of the sphenoid. The sphenoid portion of the lateral wall is separated from the roof by superior orbital fissure and from the floor by the inferior orbital fissure. The thin floor is composed mainly of the orbital plate of the maxilla, the zygomatic bone anteriorly and the palatine bone posteriorly. The medial wall is quadrangular in shape and is compesed of the ethmoid centrally, surrounded by the frontal bone superiorly and anteriorly, the lacrimal bone inferiorly and anteriorly, and the sphenoind bone posteriorly. Of particular importance from the point of view of injection into the medial compartement are the positions of the anterior and posterior lacrimal crests between which lies the fossa containing the lacrimal sac.

The average adult orbital height messured at the enterrance is 35 mm and the width 40 mm, the orbital depth messured from the hind surface of the eye ball to the apex is approximately 25 mm (range 12-35 mm). When considering the position of the needle point in relation to the apex, the relative angulations of the medial and lateral walls must be taken into account. If the length of the needle and axial length of the eye ball are known, and accepting that orbital wall angles are reasonably constant, accuracy of needle placement is achievable (fig.2).

The angle between the lateral wall of both orbits is approximately 90 degrees and the angle between the lateral and medial walls of one side is approximately 45 degrees. It follows that the medial walls of the orbit are nearly perpendicular to the frontal plane. The orbital axis and visual axis (the position of the eye when in straight or primary gaze) do not coincide and

the anaesthetist must be quiet clear as to which one he or she referring to when describing angles for insertion of needles.

Figure (1): Diagrammatic representation of the angles of the lateral and medial walls of the orbits in transverse section. The needles are 2.5 cm from shoulder to point

Illustration drawn by Alexander James is from Johnson RW, Forest FC. Local and General Anaesthsia for Ophthalmic Surgery. Oxford: butterworth-Heinemann, 1994, with permission from the puplisher and authers.

Orbital openings and there contents:

The optic canal transmits the optic nerve and the ophthalmic artery from the middle cranial fossa to the orbit. The superior orbital fissure carries the lacrimal, frontal, trochlear, occulomotor, nasociliary and abducent nerves, in

addition to the superior ophthalmic vein. The annulus of Zinn divides the superior orbital fissure. The trochlear, frontal and lacrimal nerves enter the orbit above (outside) the muscle cone. The area within the annulus is termed the oculomotor foramen. The inferior orbital fissure contains the foramen rotundum transmitting the maxillary branch of the trigeminal nerve from the middle cranial fossa to the pterygopalatine fossa (Snell R.S, Lemp MA Clinical Anatomy of the Eye. Boston: Blackwell, 1989).

Relations:

Above the roof are the frontal air sinuses anteriorly and the meninges and the frontal lobe of the cerebral hemisphere. Inferior to the floor is the maxillary air sinus. The infraorbital nerve and blood vessels lie within the infraorbital canal. Laterally the orbit is related to the temporal fossa in the anterior portion and the middle cranial fossa containing the temporal lobe of the cerebral hemisphere and its investing meninges posteriorly. Medially, the orbital wall is related to the nasal cavity anteriorly, the ethmoid sinuses in the middle part and the sphenoid sinus posteriorly. The bony walls may be very thin in some individuals and needle penetration is possible (*Munich*, 1987).

The globe:

The eyeball is situated in the anterior part of the orbital cavity closer to the roof than the floor and nearer the lateral