Role of PET/CT In Cardiology

Essay

Submitted for the fulfillment of M.Sc. degree
In Nuclear Medicine

By

Fairoz Mohammed S. Addin Mohammed

Under Supervision of

Dr. Sherif Mohamed El-Refaei

Assistant Professor of Nuclear Medicine

Dr. Mahassen Amin Abo-Gabal

Lecturer of Nuclear Medicine

Faculty of Medicine - Cairo University 2008

DEDICATION

This Essay is dedicated to My Husband Mahfoudh Abdullah And my daughter Maha.

Abstract:

The integration of positron emission tomography (PET) and multidetector CT (PET/CT) technology provides a potential opportunity to delineate the anatomic extent and physiologic severity of coronary atherosclerosis and obstructive disease in a single setting. It allows detection and quantification of the burden of the extent of calcified and non calcified plaques, quantification of vascular reactivity and endothelial health, and identification of flow-limiting coronary stenosis. PET/CT also has the potential to identify high-risk plaques in the coronary and other arterial beds. Together, by revealing the degree and location of anatomic stenosis and their physiologic significance, and the plaque burden and its composition, integrated PET/CT can provide unique information that may improve noninvasive diagnosis of coronary artery disease (CAD) and the prediction of cardiovascular risk.

In addition, this approach expands the diagnostic capability of nuclear cardiology to include atherosclerosis and may facilitate further study of atherothrombosis progression and its response to therapy, thus allowing assessment of subclinical disease.

Key ward: PET cardiology, PET/CT in Cardiology, Hybrid PET/CT in CAD.

ACKNOWLEDGMENTS

I would like to express my thanks and deep appreciation to Dr. Hosna Mustafa for her all advices and assistance all along my master program.

I would like also to greatly thank Dr. Sherif El-Refaei for his supervision of this essay as well as his continuous help and assistance.

Additionally I would like to thank Dr. Mahasen Amen for her supervision of this essay.

At the personal level I would like to thank Dr. Ahmed Qasem Alansi and Dr. Ali Al-Meeri for their support during my MSc programme.

Additionally I would like to thank all of my colleagues at the Kasr El-Aini hospital as well as my colleagues at the Nuclear medicine center at Al-Thawra Hospital Sana'a (Yemen) for their continuous support.

Lastly, my unlimited thanks to my husband Dr. Mahfoudh S. Abdullah for his unlimited support and his encouragements all along.

TABLE OF CONTENTS

TABLE OF CONTENTS		V
LIST OF FIGURES		VIII
LIST OF TABELS		X
LIST OF EQUATION		XI
-	ERROR! BOOKMARK NOT I	
	RINCIPLES OF PET/CT IMAGING	
	ND TOMOGRAPHY (PET) IMAGING	
	2	
	3	
2.1.3 PET scanner Design	7	
2.1.4 Data Processing and	Image Reconstruction	
	CONSIDERATIONS	
2.2.1 Misregistration		
2.2.2 Extracardiac Activity	y14	
2.2.3 Optimal Injected Act	tivity15	
2.2.4 2D versus 3D Imagin	ng15	
2.2.5 Gated Imaging	16	
2.3 COMPUTED TOMOGRAPHY (CT) IMAGING	16
2.3.1 Introduction	16	
2.3.2 CT Development up	to 1988	
2.3.3 Image Reconstructio	n in CT	
2.3.4 Ultrafast, Multilevel	CT Using Scanning Electron Beams	
2.3.5 Modern Multislice C	Cone-Spiral CT21	
	chniques	
2.4.1 Introduction	23	
2.4.2 Initial Design Object	tives	
	for PET/CT27	
	on Correction	

GENI		
	ERAL CONSIDERATIONS FOR PERFORMING INTEGRATED PET/O	CT
3.1	RADIOPHARMACEUTICALS FOR CLINICAL CARDIAC PET/CT IMAGING	
3.1.1	Myocardial PET Perfusion Tracers	36
3.1.2	Imaging of Myocardial Metabolism and Viability	40
3.2	IODINATED CONTRAST AGENTS FOR CARDIAC CT	
	CT ANATOMY OF THE HEART	
3.3.1	Right Atrium	
3.3.2	Right Ventricle	45
3.3.3	Pulmonary Arteries	45
3.3.4	Pulmonary Veins	45
3.3.5	Left Atrium	46
3.3.6	Left Ventricle	47
3.3.7	Coronary Arteries	47
3.3.8	Cardiac Veins	48
3.3.9	Pericardium	49
3.4	PATIENT AND OCCUPATIONAL DOSIMETRY	
3.4.1	Exposure of the Patient to Radiation	50
3.4.2	Exposure of Personnel to Radiation	52
3.4.3	Radiation Protection Considerations	54
4 DIAG	NOSTIC REQUIRMENT FOR INTEGRATED PET/CT IMAGING	
4.1	Laboratory Equipment	
4.2	LABORATORY STAFF REQUIREMENT	
4.3	PATIENT PREPARATION AND SCREENING	
	STRESS-TESTING PROTOCOLS	
4.4.1	Exercise Stress Test	58
4.4.2	Pharmacological stress Test	59

5.2.4	Emission Scan	56	
5.2.5	Mode of Acquisition in PET/CT imaging	57	
5.3	QUALITY ASSURANCE INTEGRATED PET/CT IMAGING		70
5.3.1	Count Density	70	
5.3.2	Blood Pool Clearance	71	
5.3.3	Patient Motion	73	
5.3.4	Attenuation Correction	74	
5.3.5	Image Reconstruction Artifacts	75	
6 CLIN	ICAL APPLICATION OF INTEGRATED PET/CT	••••••	76
6.1	Introduction		76
6.2	LIMITATIONS OF SINGLE-MODALITY APPROACHES TO ROUTINE DIAGNOSIS AND MAN	AGEMENT	ГОБ
CARDIAC	DISEASE		76
6.2.1	Computed Tomography	76	
6.2.2	Positron Emission Tomography	79	
6.3	CLINICAL APPLICATION OF PET/CT IN CARDIOLOGY		80
6.3.1	Early Detection and Diagnosis of Coronary Artery Disease (CAD)	30	
6.3.2	Noninvasive Coronary Angiography by CT	93	
6.3.3	Identifying Atherosclerotic Plaque Burden	98	
6.3.4	Assessing Subclinical Atherosclerosis	10	
6.3.5	Assessment of Blood Flow	12	
6.3.6	Assessment of Heart Failure	15	
6.3.7	Assessment of Myocardial Viability	17	
6.3.8	Guiding for Ablation of Scar-related Ventricular Tachycardia12	24	
7 FUTU	JRE PROSPECTIVE OF PET/CT IN CARDIOLOGY	•••••	.127
8 CASI	E REPORTS IN ROLE OF PET/CT IN CARDIOLOGY	••••••	.128
CASE (1): Assessing Myocardial Viability with PET/CT Study	•••••	.128
CASE (2)): Integrating Myocardial Perfusion and CT Coronary Angiography to Di	AGNOSE	AND
MANAGE	HIGH-RISK PATIENTS	•••••	.130
` ') INTEGRATING MYOCARDIAL PERFUSION AND CT CORONARY ANGIOGRAPHY TO DI		
MANAGE	PATIENTS WITH SUSPECTED CAD		.134
9 REFI	RENCES	•••••	.138

LIST OF FIGURES

<u>Figure</u>	<u>Page</u>
FIGURE 1: ANNIHILATION RADIATION (PAIR OF 511 KEV GAMMA RAYS)	3
FIGURE 2: DETECTOR CONFIGURATION IN PET SCANNERS	5
FIGURE 3: IMAGING WITH AND WITHOUT AXIAL SEPTA	9
FIGURE 4: FLOWCHART OF PET DATA PROCESSING, DIFFERENT CORRECTION AN	ND IMAGE
RECONSTRUCTION	10
FIGURE 5: BINNING OF RAW PET DATA INTO SINOGRAMS	12
FIGURE 6: ARTIST'S ILLUSTRATION OF AN ELECTRON BEAM CT SCANNER	20
FIGURE 7: A VOLUME-RENDERED FRAME FROM A CINE SEQUENCE OF THE HEART US	
FIGURE 8: THE TYPICAL COMPONENTS FOUND INSIDE MODERN SPIRAL AND MU	
SPIRAL SCANNERS.A	21
FIGURE 9: A SCHEMATIC OF A CURRENT PET-CT SCANNER DESIGN, THIS	S DESIGN
INCORPORATES A MULTIDETECTOR SPIRAL CT SCANNER AND AN LSO PET SCAN	NER26
FIGURE 10: CURRENT COMMERCIAL PET-CT SCANNERS	28
FIGURE 11: THE BILINEAR SCALING FUNCTION	30
FIGURE 12: A TYPICAL IMAGING PROTOCOL	33
FIGURE 13: SERIAL PET IMAGES OF CARDIAC BLOOD CLEARANCE AND UPTAKI	E OF 13N-
AMMONIA IN A HUMAN SUBJECT.)	36
FIGURE 14: PLASMA AND MYOCARDIAL KINETICS OF ¹³ N-AMMONIA IN HUMANS	36
FIGURE 15: 13N-AMMONIA PET IMAGES DEMONSTRATING ANTERIOR AND LATERAL	DEFECTS
DURING PHARMACOLOGICAL STRESS AND SIGNIFICANT IMPROVEMENT	AT REST,
CONSISTENT WITH ISCHEMIA	38
FIGURE 16: SERIAL PET IMAGES OF BLOOD POOL AND MYOCARDIAL 82RB ACTIVITY	TY IN THE
FIRST 3 MINUTES AFTER INJECTION	39
FIGURE 17: SCHEMATIC DIAGRAM OF CELLULAR FDG UPTAKE AND RETENTION	41
FIGURE 18: SERIAL DYNAMIC IMAGES OF PLASMA AND MYOCARDIAL 18F FDG ACTIVI	TY41
FIGURE 19: CARDIAC ANATOMY TOMOGRAM RECONSTRUCTION	55
FIGURE 20:CARDIAC ANATOMY OF THE PULMONARY ARTERY	57
FIGURE 21:CARDIAC ANATOMY OF THE AORTIC SINUSES	58
FIGURE 22: THE 3 AORTIC SINUSES OF VALSALVA, THE ANTERIOR (A), POSTERIOR R	IGHT (PR),
AND POSTERIOR LEFT (PL)	47
FIGURE 23: SURFACE-RENDERED, THREE-DIMENSIONAL CT CORONARY ARTE	RIOGRAM
DISPLAYED IN CRANIALIZED LEFT ANTERIOR OBLIQUE VIEW	49
FIGURE 24: INTEGRATED PET/CT IMAGING PROTOCOLS	63
FIGURE 25: MYOCARDIAL VIABILITY PROTOCOLS USING PET/CT.	64
FIGURE 26: SCOUT SCAN ORTAINED ON A HVRRID PET/CT SYSTEM	65

FIGURE 27: INFLUENCE OF RESPIRATORY GATING ON CARDIAC MOTION IS DEMONSTRATED IN
THIS ¹³ N-AMMONIA STUDY68
FIGURE 28 COUNT-POOR REST AND STRESS 82RB STUDY IN A LARGE PATIENT STUDIED WITH
ARMS DOWN LEADING TO DECREASE COUNT STATISTICS71
FIGURE 29: SEQUENTIAL REST ⁸² RB IMAGES OBTAINED
FIGURE 30: STRESS AND REST ⁸² RB IMAGES OF THE HEART IN SHORT AXIS, VERTICAL LONG
AXIS, AND HORIZONTAL LONG AXIS,
FIGURE 31: CORRELATION BETWEEN QUANTITATIVE CORONARY ANGIOGRAPHY (QCA) AND 64-
SLICE CTA MEASUREMENTS
FIGURE 32: FUSED 3D RECONSTRUCTIONS OF CORONARY CTA AND STRESS 82RB MYOCARDIAI
PERFUSION STUDY86
FIGURE 33: CONTINUUM OF CORONARY ARTERY DISEASE. ATHEROSCLEROSIS PROGRESSES TO
ISCHEMIA AND INFARCTION AND THEN TO HEART FAILURE104
FIGURE 34: INTEGRATED PET/CTA STUDY
FIGURE 35: INTEGRATED 82RB MYOCARDIAL PERFUSION AND NON-CONTRAST GATED CT SCAN
111
FIGURE 36: MIDVENTRICULAR SHORT AXIS SLICES OF MYOCARDIAL PERFUSION (OBTAINED
WITH 13NAMMONIA) AND FDG UPTAKE ILLUSTRATING TISSUE VIABILITY PATTERNS120
FIGURE 37: QUANTIFICATION OF MAGNITUDE OF MYOCARDIAL VIABILITY AND SCAR123
FIGURE 38: REST 82RB AND FDG IMAGES IN CORRESPONDING SHORT AXIS, VERTICAL LONG
AXIS, AND HORIZONTAL LONG AXIS SLICES. 129
FIGURE 39: DOBUTAMINE STRESS AND REST 82RB IMAGES IN CORRESPONDING SHORT AXIS
VERTICAL LONG AXIS, AND HORIZONTAL LONG AXIS SLICES132
FIGURE 40: SELECTED CURVED MULTIPLANAR REFORMATS OF THE CT CORONARY
ANGIOGRAM133
FIGURE 41: ADENOSINE STRESS AND REST 82RB IMAGES IN CORRESPONDING SHORT AXIS
VERTICAL LONG AXIS, AND HORIZONTAL LONG AXIS SLICES136
FIGURE 42:SELECTED CURVED MULTIPLANAR REFORMATS OF THE CT CORONARY ANGIOGRAM
137

LIST OF TABELS

<u>Table</u> <u>Pag</u>
TABLE 1: CHARACTERISTICS OF THE AVAILABLE RADIOTRACERS FOR CARDIAC PET IMAGIN
TABLE 2: CLASSIFICATION OF IODINATED CONTRAST MEDIA BASED ON OSMOLARITY4
TABLE 3: EFFECTIVE DOSES FOR ADULT PATIENTS FROM RADIOPHARMACEUTICALS USED I
PET/CT CARDIOLOGY5
TABLE 4: RECOMMENDED SUPPLIES FOR CARDIAC PET/CT STRESS TESTING
TABLE 5: DIFFERENCES IN IMAGING PROTOCOLS FOR THE 3 COMMONLY USED PET PERFUSIO
RADIOTRACERS6
TABLE 6: CLINICAL DIFFERENCES BETWEEN CONVENTIONAL GAMMA RAY AND CT-BASE
TRANSMISSION IMAGING.)6
TABLE 7: DIFFERENCES BETWEEN DYNAMIC AND GATED PET MYOCARDIAL PERFUSIO
IMAGING6
TABLE 8: REASONS FOR COUNT-POOR PET IMAGES
TABLE 9: SYSTEMATIC APPROACH TO PERFORMING PET/CT MYOCARDIAL PERFUSION IMAGE
7
TABLE 10: SUMMARY OF PUBLISHED LITERATURE WITH REGARD TO DIAGNOSTIC ACCURAC
OF PET AND PET/CT

LIST OF EQUATION

<u>Equation</u>	<u>Page</u>
EQUATION 1	2
EQUATION 2	
EQUATION 3	(

1 INTRODUCTION

Since the introduction of the first prototype computed tomography (CT) scanner in 1972, Rapid commercial development of tomographic imaging followed has made significant contributions to the diagnosis and staging of disease, and within 3 years of its appearance more than 12 companies were marketing, or intending to market, CT scanners; about half that number actually market CT scanners today. With the introduction of magnetic resonance imaging (MRI) in the early 1980s, CT was, at that time, predicted to last another 5 years at most before being replaced by MRI for anatomic imaging [1].

Obviously this did not happen, and today, with multislice detectors, spiral acquisition, and subsecond rotation times, CT continues to develop and play a major role in clinical imaging, especially for anatomic regions outside the brain. Functional imaging with positron-emitting isotopes was first proposed in the early 1950s as an imaging technique that could offer greater sensitivity than conventional nuclear medicine techniques with single photon-emitting isotopes. The SPECT collimator is eliminated and replaced by electronic collimation the coincident detection of two photons from positron annihilation, greatly increasing the sensitivity of the imaging system. However, other than some early prototypes in the 1960s, instrumentation to image positron emitters did not emerge seriously until the 1970s, and the first commercial PET scanners date from around 1980. PET was initially perceived as a complex and expensive technology requiring both a cyclotron to produce the shortlived PET radioisotopes and a PET scanner to image the tracer distribution in the patient. Consequently, during the 1970s, PET did not experience the explosive growth of CT, nor, during the 1980s, the comparable growth of MRI. In fact, it was not until the 1990s that PET became recognized as an important technique for imaging cancer by mapping glucose utilization throughout the body with FDG. The elevated utilization of glucose by malignant cells allows cancerous tissue to be identified anywhere in the body, even though it may have no anatomic correlate that would allow identification on a CT scan [1].

The recent development of combined PET/CT instrumentation is an important evolution in imaging technology. The development of the first PET/CT prototype was initiated in 1992 with the objectives to integrate CT and PET within the same device,

to use the CT images for the attenuation and scatter correction of the PET emission data, and to explore the use of anatomic images to define tissue boundaries for PET reconstruction. Thus, the goal was to construct a device with both clinical CT and clinical PET capability so that a full anatomic and functional scan could be acquired in a single session, obviating the need for the patient to undergo an additional clinical CT scan. However, by the time the prototype became operational in 1998; neither the CT nor the PET components were state-of-the-art. Nevertheless, the work convincingly demonstrated the feasibility of combining the two technologies into a single device that could acquire co-registered anatomic and functional images without the need for software realignment. As mentioned, a number of important lessons emerged during the clinical evaluation program that followed the installation of the prototype and covered the years from 1998 until 2001 [1].Currently, five vendors offer PET/CT designs. However, P J Ell noted that only 1% of PET/CT scans are used in cardiology with a predicted useage of 15% in near future [2].

2 INSTRUMENTATION AND PRINCIPLES OF PET/CT IMAGING

2.1 Positron Annihilation and Tomography (PET) imaging

2.1.1 Introduction

Positron emission tomography (PET) is a noninvasive modality that produces tomographic images of the distribution of a radionuclide-labeled tracer injected in the body [3]. As the name suggests, PET imaging is based on radionuclide that decay by positron emission (Figure 1. For example, fluorine-18 (18 F) decays to oxygen-18 (18 O), emitting a positron (β) and a neutrino (ve):

$$^{18}\text{F} \rightarrow ^{18}\text{O} + \beta^+ + ve$$
 Equation 1

A positron is classified as antimatter and is analogous to an electron, having identical mass but opposite electrical charge. The positron is ejected from the nucleus and rapidly loses its kinetic energy through collisions with numerous nearby electrons. Since antimatter and matter are mutually unstable, the positron and an electron then undergo a process known as *positron annihilation* and are converted into

a pair of gamma-ray photons. Because total energy is conserved, each gamma ray has energy of 511 keV, which is equivalent to the mass of the positron and of the electron according to the well-known relationship $E = mc^2$. Because total momentum is conserved, the two gamma rays travel in opposite directions with a relative angle very close to 180 degrees.

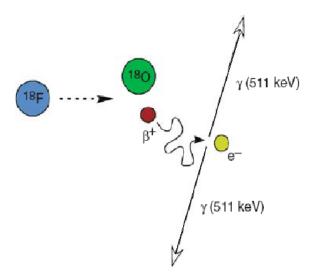


Figure 1: Annihilation radiation (pair of 511 keV gamma rays) results from the interaction of an electron e- and positron β + emitted by a PET radionuclide (18 F in this example, which decays to 18 O).

2.1.2 PET Detectors

Detectors used in PET scanners [4, 5] are designed for optimal detection of 511 keV coincident gamma rays under clinical imaging conditions.

- First, the incident gamma ray is absorbed in a scintillation crystal and produces energetic electrons, which in turn produce a cascade of visible photons. This flash of visible light exits the crystal and is shaped by a light guide before reaching an array (often a 2x2 block) of photomultiplier tubes (PMTs).
- The PMTs convert the flash of light into electronic pulse signals that are processed by front-end amplifiers and other electronics.
- The integrated signal from the group of PMTs is measured and is proportional to the total energy deposited in the crystal.
- The scintillation event is rejected if the detected energy is outside the allowed range for 511 keV gamma rays, set by the lower level discriminator (LLD) and upper-level discriminator (ULD) values (approximately 400 keV and 650 keV,

- respectively). By restricting the acceptable energy range, the numbers of scattered gamma rays have energies lower than 511 keV is minimized.
- A position-weighted signal is processed in order to determine the crystal of interaction, which specifies the detected location of the event. The spatial resolution of the detector is limited largely by the physical size of the individual scintillation crystals.
- After being processed by the front-end electronics, the electronic signals associated with the scintillation events are then processed by coincidence electronics.
- The coincidence electronics sample all detectors and accurately determine the time of each detected event, within time resolution τ . The timing pulses from all electronics banks then are compared. If two time pulses overlap, the two associated events are considered to be simultaneous and are designated as a coincidence pair. The definition of simultaneity is limited by the coincidence timing window 2τ , which is in the range of 4 to 16 ns on clinical PET scanners.
- The coincidence timing window is set to be as small as possible so that nearly all true coincidence events are detected and as many "random" coincidence events as possible are rejected. Random coincidences arise when two 511 keV gamma rays originating from different positron decay events are detected by chance within the coincidence timing window. For a pair of detectors having "singles" count rates of S1 and S2 for individual 511 keV gamma rays, the random coincidence rate R for the pair of detectors depends linearly on the coincidence timing window and is given by:

$$R = 2\tau S_1 S_2$$
 Equation 2

The random coincidence rate is proportional to the square of the source activity, whereas the true coincidence rate is linear with respect to the source activity. Thus, the relative contribution of random coincidences rises for increasing injected dose. Both random and scatter events lead to erroneous back projection (Figure 2) and should be minimized through appropriate detector design and configuration