

Photothermal Study of Semiconductor Nanoparticles for Photovoltaic Applications

A Thesis
Submitted to the Faculty of Science
Ain Shams University
In Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy in
Physics

By

Ali Badawi Mustafa Ali

M.Sc. University of Jordan (1997)

Supervised by

Prof. Dr. Hassan Talaat

Prof. of Experimental Physics Faculty of Science Ain Shams University

Prof. Dr. Najm Al - Hosainy

Prof. of Quantum Optics Faculty of Science Taif University

Prof. Dr. Saied Abdallah

Prof. of Experimental Physics Faculty of Science Taif University

Photothermal Study of Semiconductor Nanoparticles for Photovoltaic Applications

A Thesis
Submitted to the Faculty of Science
Ain Shams University
In Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy in
Physics

By

Ali Badawi Mustafa Ali

M.Sc. University of Jordan (1997)

Supervised by

Prof. Dr. Hassan Talaat

Prof. of Experimental Physics Faculty of Science Ain Shams University

Prof. Dr. Najm Al - Hosainy

Prof. of Quantum Optics Faculty of Science Taif University

Prof. Dr. Saied Abdallah

Prof. of Experimental Physics Faculty of Science Taif University

This thesis entitled: Photot particles for Photovoltaic	-			
Mustafa Ali has been			-	
Shams University		•	-	
				Date
				Date
				Date
				Date
				Date
				Duic

The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.

I hereby declare that the work contained in this thesis, now see the degree of Doctorate of the philosophy of Science (Physic Shams University, is the result of my own investigations.	
Candidate (Ali Badawi M	Iustafa Ali)
Supervisor (Prof. Dr. Has	ssan Talaat)
Supervisor (Prof. Dr. Naj	m Al-Hosainy)
Supervisor (Prof. Dr. Saied	l Abdallah)
I hereby certify that the work embodied in this thesis has not accepted in substance for any degree, and is not currently be for any other degree.	-
Candidate (Ali Bada	wi Mustafa Ali)

To
My Parents,
My wife,
My sons: Mohammad,
Ahmad, and Khalid,
My sisters and brothers.
With respect and love.

Ali Badawi Mustafa Ali

Acknowledgments

First, for granting me this opportunity for doing research in the field of nanoscience and photovoltaic applications. I pray and ask the almighty GOD for blessing me the best in this life and in the hereafter.

My profound gratitude and appreciation to my supervisor Prof. Dr. Hassan Talaat for his great assistance, encouragement, and valuable advices while supervising this work. He always received me with his friendly smile and I could not have imagined having a better supervisor for my PhD. I am also grateful to Prof. Dr. Najm Al-Hosainy and Prof. Dr. Saied Abdallah for their helpful comments, constructive discussions and continued support while cosupervising this work. Also, I would like to thank Prof. Dr. Sohair Negm for her help and support.

Last but not least, I am indebted to my parents for their ultimate support, encouragements, and patience. With their love and inspiration, the dream has become a reality. Also, my special appreciation is to my wife who was the main supporter during this work.

Contents

Chapter 1: Introduction	1
1.1 Nanotechnology	1
1.1.1 Introduction to nanotechnology	1
1.1.2 History	2
1.1.3 Applications	3
1.2 Photothermal spectroscopy	6
1.3 Photoacoustic spectroscopy	8
1.3.1 Historical developments	9
1.3.2 Advantages	10
1.4 Photovoltaic effect	10
1.4.1 First generation solar cells	11
1.4.2 Second generation solar cells	11
1.4.3 Third generation solar cells	12
1.4.3.1 Dye-sensitized solar cell (DSSC)	12
1.4.3.2 Quantum dot sensitized solar cells (QDSSCs)	13
1.5 Aims of the present work	16
References	18
Chapter 2: Semiconductor Nanoparticles	20
2.1 Introduction	20
2.2 Nanoscale materials and quantum mechanics	21
2.3 From atoms to molecules and quantum dots	23
2.4 Shrinking bulk material to a quantum dot	25
2.4.1 Three-dimensional systems	26
2.4.2 Two-dimensional systems	29
2.4.3 One-dimensional systems	30
2.4.4 Zero-dimensional systems (quantum dots)	32
2.5 Density of states D (k)	33
2.6 Nanoparticles synthesis	36
2.6.1 Categorizing nanoparticles synthesis by synthesis strategy	36
2.6.1.1 Bottom-Up strategy	36
2.6.1.2 Top-Down strategy	37
2.6.2 Categorizing nanoparticles synthesis by nature of the	20
process	38
2.6.2.1 Chemical methods	38
2.6.2.2 Physical methods	39
2.6.2.3 Biological methods	39
2.6.2.4 Combination methods	39
2.7 Energy states and optical transitions in semiconductor	/ 1
nanocrystals	41

References	46
Chapter 3:Photoacoustic Spectroscopy Theoretical	50
Background	50
3.1 Introduction	50
3.2 Rosencwaig-Gersho theory	52
3.2.1 Thermal diffusion equation	52
3.2.2 Temperature distribution in the cell	54
3.2.3 Production of the acoustic signal	58
3.3 PA signal as amplitude and phase	60
3.4 Special case: Thermally thick samples	63
References	66
Chapter 4: Quantum Dots Sensitized Solar Cells	69
4.1 Introduction	69
4.2 Energy alignments	71
4.3 Function of a QDSSC	72
4.4 Photovoltaic characterization of QDSSC	75
4.4.1 Current density-voltage (J-V) measurements	75
4.4.2 Incident photon-to-electron conversion efficiency	79
4.5 Adsorption techniques of QDs onto the wide band gap	70
nanostructured semiconductor	79
4.5.1 In situ	79
4.5.1.1 Chemical bath deposition (CBD)	80
4.5.1.2 Successive ion-layer adsorption and reaction (SILAR)	80
4.5.2 Ex situ	81
4.5.2.1 linker-assisted adsorption (LA)	82
4.5.2.2 Electrophoretic deposition (EPD)	82
4.5.2.3 Direct adsorption (DA)	83
4.6 Description of QDSSC	84
4.6.1 Conducting glass substrates	84
4.6.2 Wide band gap nanostructured semiconductor layer	85
4.6.3 Quantum dots layer	87
4.6.4 Electrolyte	87
4.6.5 Counter electrode	87
4.6.6 Assembly of QDSSC	87
References	89
Chapter 5: Experimental Setups	96
5.1 Samples preparation	96
5.1.1 CdTe quantum dots	96
5.1.2 CdSe quantum dots	97
5.1.3 CdS quantum dots	98

5.2 Photoacoustic experiment setup	99
5.2.1 PA cell (MTEC Model 300)	100
5.2.2 Lock-In amplifier model SR 850 DSP	102
5.2.3 Oriel cornerstone model 74125 monochromator	103
5.2.4 Argon ion laser Series 543 (Melles Griot, Carlsbad, CA 92009)	105
5.2.5 Optical chopper system SR 540- Stanford Research Systems Inc.	106
5.3 Photovoltaic Experiment Setup	107
5.3.1 Solar simulator sun 2000 - ABET technologies	108
5.3.2 Keithley series 2400 digital sourcemeter instruments	109
References	111
Chapter 6: Results and Discussions	112
6.1 Introduction	112
6.2 PA Measurements of Cadmium Chacogenides QDs	113
6.2.1 PA measurements of cadmium telluride (CdTe) QDs	113
6.2.1.1 PA absorption spectroscopy	113
6.2.1.2 Thermal parameters measurements	118
6.2.2 PA measurements cadmium selenide (CdSe) QDs	125
6.2.2.1 PA absorption spectroscopy	125
6.2.2.2 Thermal parameters measurements	129
6.2.3 PA measurements cadmium sulfide (CdS) QDs	135
6.2.3.1 PA absorption spectroscopy	135
6.3 Photovoltaic Measurements	139
6.3.1 CdTe QDs sensitized solar cells	139
6.3.1.1 Characterization of CdTe QDs sensitized TiO ₂ electrodes	139
6.3.1.2 Characterization of different sizes of CdTe QDSSC	143
6.3.2 CdSe QDs sensitized solar cells	158
6.3.2.1 Characterization of CdSe QDs sensitized TiO ₂ electrodes	158
6.3.2.2 Characterization of different sizes of CdSe QDSSC	162
6.3.3 CdS QDs sensitized solar cells	175
6.3.3.1 Characterization of CdS QDs sensitized TiO ₂ electrodes	175
6.3.32 Characterization of different sizes of CdS QDSSC	177
6.4 Comparison between different CdX QDSSCs	182
References	184
Chapter 7: Conclusions and Outlooks	192
Appendix	196
A.1 List of symbols	196
A.2 List of acronyms	198
A.3 List of publications	200

List of Figures

Fig. No.	Caption	Page
Fig. 1.1	A schematic representation of various photo-induced	7
	processes in condensed matter.	
Fig. 1.2	Schematic diagram of Photoacoustic effect.	8
Fig. 1.3	Schematic of TiO ₂ nanoparticles/Dye / Electrolyte	13
	dye-sensitized solar cell.	
Fig. 1.4	An artistic depiction of the basic design of a QDSSC	15
Fig. 1.5	Chronological record energy-conversion efficiencies	16
	of solar cells.	
Fig. 2.1	Three quantization configuration types in	21
	semiconductor depending on whether the confinement	
	exists in one, two or three dimensions	
Fig. 2.2	Electronic energy levels of a quantum dot are	24
	intermediate between that of the atom or molecule and	
	the bulk solid state body	
Fig. 2.3	(a) Three dimensional solid, (b) Representation of the	27
	allowed states in the reciprocal k-space, and (c)	
	Dispersion relation.	
Fig. 2.4	(a) Two dimensional solid, (b) Representation of the	30
	allowed states in the reciprocal k-space, and (c)	
	Dispersion relation.	
Fig. 2.5	(a) One dimensional solid, (b) Representation of the	31
	allowed states in the reciprocal k-space, and (c)	
	Dispersion relation.	
Fig. 2.6	(a) Zero dimensional solid, (b) Representation of the	32
	allowed states in the reciprocal k-space, and (c)	
	Dispersion relation.	

Fig. 2.7	Density of states functions for: (a) bulk and quantum	35
	films, (b) quantum wires, and (c) quantum dots.	
Fig. 2.8	The cases of milling process: (a) collision face to	38
	face, (b) and (c) collision with circulating.	
Fig. 2.9	Representation of the synthetic apparatus employed in	41
	the preparation of quantum dots by chemical	
	deposition method.	
Fig. 2.10	Electron and hole quantized levels in the model of	44
	parabolic bands. Plot on the right is an illustration of	
	the discrete structure of optical absorption in NCs.	
Fig. 3.1	Cross sectional view of a simple cylindrical PA cell.	52
Fig. 4.1	Artistic depiction of QDSSC	71
Fig. 4.2	The alignment diagram of energy levels of a QDSSC	72
	component.	
Fig. 4.3	Reactions that take place in QDSSC.	75
Fig. 4.4	Representation of the J-V and the power curves.	76
Fig. 4.5	Representation of the AirMass concept.	78
Fig. 4.6	The solar radiation spectrum at AM 1.5	78
Fig. 4.7	SILAR method for QDs deposition onto WBGS. (a)	81
	Cationic precursor (white circles represent metal	
	cations), (b) 1st rinse, (c) anionic precursor (black	
	circles represent anions), and (d) 2nd rinse.	
Fig. 4.8	Illustration of the EPD system	83
Fig. 4.9	TiO ₂ NPs electrodes immersed directly in a colloidal	84
	CdTe QDs.	
Fig. 4.10	Transmittance of the FTO glass substrate vs.	85
	wavelength	
Fig. 4.11	TEM image of TiO ₂ NPs	86

Fig. 4.12	Assembled CdSe QDSSC	88
Fig. 5.1	Setup for the organometallic synthesis.	97
Fig. 5.2	Image of colloidal solution of synthesized CdSe QDs	98
	(samples a-e)	
Fig. 5.3	Image of colloidal colloidal solution of synthesized	99
	CdS QDs (samples a-d)	
Fig. 5.4	The schematic diagram of the PA experimental set-up	100
	for optical absorption measurements.	
Fig. 5.5	Image of PA cell MTEC Model 300	101
Fig. 5.6	(a) Monochromator Oriel cornerstone model 74125,	104
	(b) the optical path diagram.	
Fig. 5.7	(a) Image of argon-ion laser image and (b) argon-ion	106
	laser image outline drawing	
Fig. 5.8	Optical chopper system SR 540 with a single beam	107
	experiment.	
Fig. 5.9	ABET 2000 solar simulator and the internal working	109
	scheme.	
Fig. 5.10	Image of keithly 2400 electrometer connected to a PC	111
Fig. 6.1	TEM micrographs for CdTe Ds sample a, b, c, and d.	114
Fig. 6.2	(a) Normalized PA spectra for the four CdTe QDs	116
	(samples (a-d)), (b) UV -Visible absorption spectra	
	for CdTe QDs samples	
Fig. 6.3	$E_{g(Nano)}$ of the CdTe QDs versus particle radius	117
Fig. 6.4	In PA signal amplitude vs. In f for CdTe QDs	120
	(samples a - d).	
Fig. 6.5	PA signal vs. (1/f) for CdTe QDs sample (a - d) and	123
	Si foil as a reference	
Fig. 6.6	(a-e) TEM micrographs for CdSe QDs (a-e). (f)	126

	HRTEM micrograph for sample e, and (g) histogram	
	of particle size distribution for sample e	
Fig. 6.7	(a) Normalized PA spectra for CdSe QDs samples (a-	128
	e), (b) UV -visible absorption spectra for CdSe QDs	
	samples (a -e)	
Fig. 6.8	Energy band gap $(E_{g(Nano)})$ of the CdSe QDs vs.	129
	particle radius (R).	
Fig. 6.9	(a-e) ln PA signal amplitude vs. ln f for CdSe QDs	130
	for samples $(a - e)$	
Fig. 6.10	PA signal amplitude vs. (1/f) for CdSe QDs sample (133
	a- e) and Si foil as a reference	
Fig. 6.11	Thermal conductivity of CdSe QDs vs. QDs radius R	135
Fig. 6.12	(a-d) TEM micrographs for CdS QDs sample (a to d)	136
Fig. 6.13	a: Normalized PA spectra for CdS QDs samples (a to	137
	d), b: UV -Visible absorption spectra for CdS QDs	
	samples (a -d)	
Fig. 6.14	Energy band gap of CdS QDs vs. QDs radius R	138
Fig. 6.15	(a-d) UV- Vis. absorption spectra of CdTe QDs (140
	sample a to d) deposited on TiO ₂ at different dipping	
	time (0, 3, 6, 24, and 50 h)	
Fig. 6.16	(a) EDX of CdTe QDs (sample a) adsorbed onto TiO ₂	142
	film, (b) EDX of CdTe QDs (sample c) adsorbed onto	
	TiO ₂ film.	
Fig. 6.17	(a - d) J-V characteristics curve of CdTe QDSSC (143
	sample a to d) for: (a) 3 h, (b) 6 h, (c) 24 h and (d) 50	
	h dipping time.	
Fig. 6.18	Efficiency (η) of CdTe (sample a) QDSSCs vs.	148
	dipping time.	

Fig. 6.19	J-V characteristic curve of CdTe QDSSCs for	149
	different sizes of CdTe QDs (a-d) at 50 h dipping	
	times.	
Fig. 6.20	Efficiency (η) of CdTe QDSSC vs.CdTe QDs radius R	152
Fig. 6.21	Summary of energy diagram showing the alignment of	152
	the VBM and CBM of CdTe QDs to the TiO ₂ valence	
	and conduction bands (all data vs. vacuum).	
Fig. 6.22	(a-d) J -V characteristics curve of a CdTe (sample a-d)	154
	QDSSC for 50 h dipping time at: (a) 30%, (b) 50%,	
	(c) 80%, and (d) 100% of sun, (e) Short circuit current	
	J_{sc} vs. percentage of sun for CdTe (sample a) QDSSC	
Fig. 6.23	Photocurrent response to ON- OF cycles of visible	158
	illumination of CdTe QDSSCs for different CdTe QDs	
	radii: (a) 2.10, (b) 2.27, (c) 2.32, and (d) 2.47 nm,	
	under 1 sun illumination.	
Fig. 6.24	(a-e) UV-Vis. absorption spectra of CdSe QDs (159
	sample a -e) deposited on TiO ₂ NPs at 0, 1, 3, 6, and	
	24 hour dipping time	
Fig. 6.25	EDX of CdSe QDs (sample c) adsorbed onto TiO ₂	161
	film.	
Fig. 6.26	(a-e) J-V characteristics curves of CdSe(sample a-e)	163
	QDSSCs for: (a) 1 h,(b) 3 h, (c) 6 h, and (d) 24 h	
	dipping time.	
Fig. 6.27	Efficiency (η) of CdSe (sample c) QDSSCs vs.	167
	dipping time.	
Fig. 6.28	J-V characteristic curve of QDSSCs of CdSe QDs	168
	radii: (a) 2.01, (b) 2.16, (c) 2.27, (d) 2.42, and (e)	
	2.58nm.	

Fig. 6.29	Solar spectrum power at different wavelength (sea	170
	level)	
Fig. 6.30	Summary of energy diagram showing the alignment of	170
	the VBM and CBM of CdSe QDs with respect to TiO ₂	
	valence and conduction bands (all data vs. vacuum).	
Fig. 6.31	(a-e) Short circuit current J_{sc} vs. percentage of sun for	172
	CdSe (sample a-e) QDSSCs.	
Fig. 6.32	J-V characteristics curve of a CdSe (sample c)	174
	QDSSC at 6 hours dipping time and under	
	illumination intensities: (a) 30%, (b) 50%, (c) 80%,	
	and (d) 100% of sun.	
Fig. 6.33	UV- Vis. absorption spectra of CdS QDs (sample d)	175
	deposited on TiO ₂ NPs at 0, 1, 3, 6, 24, and 50 hour	
	dipping time	
Fig. 6.34	EDX of CdS QDs sample c adsorbed onto TiO ₂ film.	176
Fig. 6.35	(a) HRTEM micrographs of TiO ₂ NPs, (b) a scraped	176
	material of CdS QDs/TiO ₂ NPs from FTO electrode	
Fig. 6.36	J-V characteristics curves of CdS (sample d)	177
	QDSSCs for different dipping times.	
Fig. 6.37	Efficiency η of CdS (sample d) QDSSCs vs. dipping	178
	time.	
Fig. 6.38	J-V characteristic curve of QDSSCs of CdS QDs radii	179
	: (a) 1.57, (b) 1.64, (c) 1.69, and (d) 1.92nm.	
Fig. 6.39	(a) J-V characteristic curves of CdS (sample d) at 6	181
	hours dipping time and under: (a) 0.3 sun, (b) 0.5	
	sun, (c) 0.8 sun, and (d) 1.0 sun.	
	(b) Short circuit current density (J_{sc}) vs. percentage	
	of sun for CdS (sample d) QDSSC.	