Neurological Outcome After Cardiopulmonary Resuscitation And Its Prediction

An Essay Submitted For Partial Fulfillment Of Master Degree In critical care

By

Sameh Shehata Abdou Shehata

M.B.B.CH. Al-Azhar University

Under supervision of

Prof. Dr. Sahar kamal Mohamed Abul Ella

Professor of Anesthesia and Intensive care Faculty of Medicine- Ain Shams University

Dr. Hadil Magdy Abd El-Hamid

Assistant Professor of Anesthesia and Intensive care Faculty of Medicine- Ain Shams University

Dr. Hany Maher Salib

Lecturer of Anesthesia and Intensive care Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2013

بِسْ مِلْ الرَّحِيمِ اللَّهُ الرَّحْمُ الرَّحِيمِ

﴿ يُؤْتِى ٱلْحِكَمَةُ مَن يَشَآءُ وَمَن يُؤْتَ ٱلْحِكَمَةَ فَقَدُ الْحِكَمَةَ فَقَدُ الْحِكَمَةَ فَقَدُ أُولُوا ٱلْأَلْبِ ﴾ أُولِي خَيْرًا كَثِيراً وَمَا يَذَّكُرُ إِلَّا ٱوْلُوا ٱلْأَلْبِ ﴾

البقرة: ٢٦٩

<u>ACKNOWLEDGMENT</u>

- First and foremost, thanks to **Allah**, the most beneficial and merciful.
- In few grateful words, I would like to express my greatest thanks to all my professors who helped me throughout this work.
- I wish particularly to express my deepest gratitude and appreciation for unfailing support; valuable advice; generous help and patience rendered me by **Professor Dr. Sahar kamal Mohammed Abul Ella,** Professor of Anesthesiology & Intensive Care, Ain Shams University. He sacrificed a great deal of her precious time and effort guiding me throughout the preparation of this essay.
- Also, I want to thank **Dr. Hadil Magdy Abd EL-Hamed**, Assistant Professor of Anesthesiology & Intensive Care, Ain Shams University for her great help and advice.
- I am indeed immensely indebted and deeply grateful to **Dr. Hany Maher Salib**, Lecturer in Anesthesiology & Intensive care, Ain Shams University, for his sincere care, untiring effort, and his great assistance during every step and every detail in this essay.
- Finally, I give all the thanks; grateful feelings and gratitude to my family and my wife for their unlimited support and help they offered me throughout my life.

Sameh Shehat

List of contents

• Introduction.	1
Physiology of Cerebral blood flow.	3
• Cardiac arrest Causes and Pathophysiology.	18
• Update Management of cardiac arrest.	29
Neurological outcome after cardiopulmonary resuscitation and its prediction.	52
Summary & Conclusion	91
• References	93
Arabic summary	1

List of acronyms and abbreviations

AA	Arachidonic Acid.
ACD-CPR	Active Compression-Decompression CPR
ACLS	Advanced Cardiovascular Life Support
ACS	Acute Coronary Syndrome
AED	Automated External Defibrillator
AHA	American Heart Association
AMI	Acute Myocardial Infarction
ATP	Adenosine Tri phosphate.
BBB	Blood Brain Barrier.
BLS	Basic Life Support
CA	Cardiac Arrest.
CBF	Cerebral Blood Flow.
CBV	Cerebral Blood volume
CK	Creatine kinase
CMR	Cerebral Metabolic Rate.
CMRO ₂	Cerebral Metabolic Rate of oxygen
CPR	Cardiopulmonary Resuscitation
CPP	Cerebral perfusion pressure
CSF	Cerebrospinal Fluid.
CT	Computed Tomography.
ECC	Emergency Cardiac Care
ECG	Electrocardiography
ED	Emergency Department
EEG	Electroencephalogram.
EMS	Emergency Medical Services
Fi O ₂	Fraction of Inspired Oxygen
FFA`s	Free Fatty Acids.
GCS	Glasgow Coma Scale.
НСР	Health Care Providers
IAC	Interposed abdominal compression.
ICP	Intracranial pressure
ICU	Intensive care unite
IHCA	In-Hospital Cardiac Arrest

IHD	Ischemic heart disease
IM	Intra Muscular
Ю	Intra Osseous
IV	Intra Venous
LDH	Lactate dehydrogenase
MAP	Mean Arterial Pressure.
MI	Myocardial infarction
MRI	Magnetic resonance imaging
NO	Nitric Oxide
NSE	Neuron specific enolase
PaCO ₂	Partial Pressure of CO ₂
PALS	Pediatric Advanced Life Support
PaO ₂	Partial Pressure of Oxygen
PEA	Pulseless Electrical Activity
PE CO ₂	Partial Pressure of Carbon Dioxide
PEEP	Positive End Expiratory Pressure
PTCA	Percutaneous Transluminal Coronary Angioplasty
ROSC	Return Of Spontaneous Circulation
SCA	Sudden Cardiac Arrest
ScvO ₂	Central Venous Oxygen Saturation
SEP	Somatosensory evoked potential
SPO ₂	Saturation of Peripheral Oxygen
VF	Ventricular Fibrillation
VT	Ventricular Tachycardia

List of Tables

Table	Title	Page
Table (3-1)	Drugs Used In CPR	50
Table (4-1)	Criteria for determination of death	66
Table (4-2)	Arbitrary classification of abnormalities on Encephalogram	67

List of Figures

Figure	Title	Page
Figure (1-1)	Effect of temperature on CMRO2.	7
Figure (1-2)	Effect of PaCO2, PaO2 and MAP on cerebral blood flow.	9
Figure (2-1)	Accumulation of plaques in arteries.	23
Figure (3-1)	AHA ECC Adult Chain of Survival	30
Figure (3-2)	Simplified Adult BLS	31
Figure (3-3)	ACLS Algorithm	43
Figure (4-1)	Creatine kinase (<i>CK</i>) and its brain- specific isoenzyme activities (<i>CK-BB</i>) in cerebrospinal fluid	74
Figure (4-2)	Lactate concentrations (mmol/L) in cerebrospinal fluid	76

Introduction

Introduction

With the advent of emergency medicine and improvements in the provision of emergency medical services, the number of patients who survive after cardiopulmonary arrest has increased. However, many of these survivors never regain consciousness and progress to persistent vegetative state while others made a remarkable neurological recovery despite a seemingly hopeless prognosis and long period of coma. Considerable researches have been carried out to identify those comatose patients who will recover sufficiently to live a meaningful life. A false prediction of bad outcome may cause the patient to be denied life-supporting treatment. On the other hand, a falsely optimistic prediction, although less serious from an ethical point of view, may lead to unnecessary prolongation of costly therapy. Therefore, an early estimation of severity of brain injury in comatose cardiac arrest survivors is required (David et al, 2011).

Cardiopulmonary Resuscitation (CPR) is the first treatment for a person who has collapsed, has no pulse and has stopped breathing; it is an emergency procedure consisting of external cardiac massage and artificial respiration along with using of certain drugs as an attempt to restore circulation of the blood and prevent death or brain damage due to lack of oxygen. So, it is a series of life—saving actions that improve the chance of survival following cardiac arrest (Andrew et al., 2010).

During the 50 years since the introduction of modern cardiopulmonary resuscitation and emergency cardiac care (ECC), there have been many advances for cardiac arrest victims. These interventions have restored the lives of many people when breathing has ceased and the heart has stopped. Resuscitation science continues to advance, and

Introduction

clinical guidelines must be updated regularly to reflect these developments and advise healthcare providers on best practice (**David et al, 2011**).

Successful resuscitation requires an integrated set of coordinated actions represented by the links in the chain of survival. The links include the following; immediate recognition of cardiac arrest, activation of the emergency response system, early CPR with an emphasis on chest compression, rapid defibrillation, effective advanced life support and integrated Post–cardiac arrest care (**Robert et al., 2010**).

The principle goal after successful resuscitation of cardiac arrest is not only to maintain the patient pulse and avoid a pulseless state, but also to prevent myocardial dysfunction and increase the likelihood of a good neurological outcome in the post-resuscitation period (**David et al, 2011**).