ACKNOWLEDGMENT

First and before all, thanks to ALLAH the creator of all for helping me to complete this work.

I would like to express my deepest gratitude to Dr. Hana Hamdy Nassef Professor of Radiodiagnosis Ain Shams University for her kind supervision unlimited support and continuous guidance through every step.

I'm also grateful to Dr. Merhan Ahmed Nasr; Lecturer of Radiodiagnosis, Ain Shams University for her continuous guidance, encouragement and support.

Last but not least no words can be good enough to convey thanks to all staff members, my colleagues, husband, my family and everyone who contributed to this work and helped in its final accomplishment.

List of tables

NO	Title	Page
1	Standard pulse sequences for MRI examination of the shoulder	39
2	Classification of Glenohumeral instability	45

≈ LIST OF FIGURES**∞**

NO.	Title	Page
1	Bone forming the shoulder joint	6
2	Different acromion types	7
3	joint capsule, superior glenohumeral ligament	10
4	suprspinatus muscle B-Infraspinatus m. C-Subscapularis m.	11
5	Rotator cuff muscles and glenohumeral ligament	13
6	coracohumeral ligament, coracoclavicular ligament	14
7	Coracoacromial ligament	15
8	rotator cuff muscles (anterior and posterior view)	16
9	long head of bicepsbrachii tendon, coracohumeral ligament	17
10	subscapularis muscle and biceps brachii muscle	18
11	Rotator interval	19
12	Synovial membrane	20
13	subacromial bursa, subcoracoid bursa	21
14	subacromial bursa	22
15	subdeltoid bursa	22
16	Mri of Various acromion shapes	25
17	Mri of normal glenoid labrum	26
18	Mri of normal shoulder tendons	27
19	Mri of rotator cuff muscles	27
20	Normal Mri shoulder	28
21	Mri normal subscapularis tendon	29
22	Mri normal superior glenohumeral ligament	30

23	Mri of superior glenohumeral ligament, inferior glenohumeral ligament	30
24	Mri middle glenohumeral ligament and inferior glenohumeral ligament	
25	MRI shoulder coil	34
26	Angled coronal scan	36
27	The angled sagittal plane	37
28	The axial plane	37
29	Arthrography of the shoulder joint	42
30	Diagram of Hill Sachs injury	51
31	Diagram shows labrum divided into six areas	52
32	Diagram of Bankart lesion	53
33	Diagram of Perthes lesion	54
34	Diagram of ALPSA lesion	55
35	Diagram of GLAD lesion	56
36	Diagram of HAGL lesion	57
37	Diagram Reverse Bankart lesion	58
38	Reverse HAGL lesion	60
39	Diagram of SLAP lesions	63
40	Diagram of paralabral cyst	64
41	Diagram of Bankart repair	71
42	capsular shift procedure	72
43	Diagram of Bristow-Helfet procedure	74
44	Diagram of Putti-Platt procedure	75
45	Mri of (Hill Sachs lesion)	80
46	Mri of (Hill Sachs lesion)	80
47	Mri of classic Bankart lesion	81

48	Mri of Bony Bankart lesion	82
49	Mri of Bankart lesion and superior tear extension	82
50	Mri of Perthes lesion	83
51	Mri of ALPSA lesion	84
52	Mri of ALPSA lesion	85
53	Mri of GLAD lesion	86
54	Mri of GLAD lesion	86
55	Mri of SLAP Lesion	88
56	Mri of HAGL lesion	89
57 (a- b-c)	Mri / CT BHAGL lesion	90-91
58	MRI Reverse Bankart lesion	92
59	MRI Reverse Hill sachs, Reverse Bankart lesion	92
60	Mri of POLPSA lesion	93
61	Mri of Posterior labral tear	94
62	Mri of Paralabral cyst	95
63	Mri of posterior labral tears	96
64	Mri of Bennett lesion	98
65	Mri of Reverse HAGL	99
66	Mri normal findings post Bankart repair	103
67	Mri detached anchor after Bankart repair	104
68	Mri capsular thickening after capsular shift procedure	106
69	Mri metallic artifact after Bankart repair	107
70	Mri recurrent labral tear after Bankart repair	108
71	Mri recurrent labral tear after prior surgery	109
72	Mri Fibrocartilagenous anteroinferior labral tear	110

73	Mri SLAP tear after prior repair	111
74	Mri posterior labral tear	112
75	Mri supraspinatus tear after prior repair	113
76	Mri displaced tacks	115
77	Mri loose hardware	116
78	Mri subscapularis tendon tear and capsular rupture	117
79	Mri post Bankart repair	119
80	Mri postoperative wound abscess	120
81	Mri septic arthritis	120
82	Mri glenohumeral chondrolysis	122
83	Mri glenohumeral chondrolysis	122

Contents

Title	Page
Acknowledgment	
List of Abbreviations	
List of figures	
List of Tables	
♦ Introduction	1
♦ Aim of the Work	3
♦ Chapter (1): Anatomy of the Shoulder	
(Normal anatomy and MRI anatomy)	4
♦ Chapter (2): MRI Techniques and	32
sequences of the shoulder joint	
♦ Chapter (3): Pathology and classification	
of shoulder instability	44
♦ Chapter (4): Operative Treatment of	
Shoulder Instability	67
♦ Chapter (5): MRI Manifestation of	
shoulder instability	79
♦ Chapter (6): Normal and Abnormal	
Findings at Postoperative MRI with case	
presentation	100
♦ Summary and Conclusion	124
♦ References	128
♦ Arabic Summary	

₹ LIST OF ABBREVIATIONS **₹**

(GHL)	Glenohumeral ligament
(IGHL)	Inferior glenohumeral ligament
(MGHL)	Middle Glenohumeral Ligament
(SGHL)	Superior Glenohumeral Ligament
(CHL)	Coracohumeral ligament
(ABER)	Abduction external rotation
(MDI)	Multidirectional instability
(ALPSA)	Anterior labroligamentous periosteal sleeve avulsion
(GLAD)	Glenolabral articular disruption
(BHAGL)	Bony humeral avulsion of glenohumeral ligament
(AIGHL)	Avulsion of the inferior glenohumeral ligament
(HAGL)	Humeral avulsion of anterior glenohumeral ligament
(PIGHL)	posterior inferior glenohumeral ligament
(SLAP)	Superior labrum anterior and posterior lesion
(POLPSA)	Posterior labrocapsular periosteal sleeve avulsion

THE ROLE OF POSTOPERATIVE MRI IN EVALUATION OF RECURRENT SHOULDER INSTABILITY.

Essay

Submitted in the Partial Fulfillment of Master Degree in **Radiodiagnosis**

By

MAHA AHMED SAIED

M.B, B.Ch.

Under Supervision of

Prof. HANA HAMDY NASSEF

Professor of Radiodiagnosis Ain Shams University

Dr. MERHAN AHMED NASR

Lecturer of Radiodiagnosis Ain Shams University

Ain Shams University 2013

INTRODUCTION.

Shoulder joint is the most mobile and most commonly dislocated joint of the body. Injuries to this joint leading to dislocation, subluxation and fracture are common, especially in young active individuals.

Glenohumeral instability can be classified differently based on the etiology (traumatic or atraumatic), direction of dislocation (anterior or posterior) or chronicity (acute or chronic).

(Jana and Gamanagatti ., 2011)

The postoperative shoulder may be evaluated with various imaging modalities, including radiography, ultrasonography (US), computed tomography (CT), and magnetic resonance (MR) imaging, each of which has advantages and disadvantages.

Radiography is adequate for the evaluation of prostheses, bone alignment, and surgical hardware, but it has very low sensitivity and specificity for the evaluation of soft tissue. US is adequate in evaluation of the soft tissues in the rotator cuff, but is operator dependent and has limitations in the evaluation of labral and bone abnormalities. CT provides high resolution depiction of osseous structures, as well as high-quality multiplanar imaging capabilities. MR imaging is the modality of choice for obtaining optimal soft-tissue visualization.

(Aurea et al .,2004)

INTRODUCTION

Shoulder instability is associated with abnormalities of the shoulder capsule, labrum, glenohumeral ligaments and/or surrounding musculature. Magnetic resonance (MR) imaging is an accurate means of evaluating potential causes of shoulder instability. Patients with shoulder instability may present with recurrent dislocations, pain and clicking and are at risk for recurrent labral injury and other shoulder abnormalities, such as rotator cuff tears.

(Wagner et al .,2002)

In general, shoulder surgery is considered only when conservative therapy fails. Surgery may be indicated when dislocation occurs repeatedly during light activity that involves overhead extension of the shoulder. Rotator cuff repair is considered when there is severe pain and loss of function in the shoulder (**Stoller et al.,2007**).

Many different surgical procedures, open and arthroscopic, have been used to repair the capsulolabral complex and to strengthen the glenohumeral ligaments in patients with post traumatic glenohumeral joint instability (**Rand et al.,2000**).

The effectiveness of arthroscopic surgery for glenohumeral instability may be more effective in young patients who have traumatic dislocations without systemic joint laxity and who do not participate in contact sports.

(Zlatkin .,2004)

INTRODUCTION

Aim of work:

The purpose of this study is to assess the underlying cause of recurrent postoperative shoulder instability to correlate the findings with the operative details, identify the common complications of the postoperative shoulder.

Describing the advantages and disadvantages of various MRI techniques in examining patients with recurrent shoulder instability.

Anatomy of the Shoulder joint (Normal anatomy and MRI anatomy)

Chapter I

Anatomy of the Shoulder joint (Normal anatomy and MRI anatomy)

The shoulder joint is a synovial joint of the ball-and socket joint in which an elegant freedom of movement is allowed at some expense to its strength and stability (Cook et al., 2011).

The bones entering in its formation are the hemispherical head of the humerus (ballinking to the shallow glenoid cavity of the scapula. Some protection of the joint against displacement is afforded by its ligaments and by the tendons and muscles that surround it (**Zlatkin .,2004**).

Bones of the shoulder joint

1. The clavicle.

Connects the axial and appendicular skeletons of the upper extremity. Its sternal end is expanded and fits into the notch on the manubrium at the sternoclavicular joint. The lateral one-third is flat, and its sternal end is expanded as it curves back to meet the scapula at the acromioclavicular joint.

2. The scapula

Consists of the scapular body, the scapular spine, the scapular neck, the acromion, the glenoid fossa, and the coracoids process (fig1). It has costal (anterior) and posterior surfaces with its anterior surface in contact with the thoracic cage (the scapulothoracic interface). From the upper part of the posterior surface, the spine of the scapula projects laterally, terminating into the acromion, which forms the lateral most tip of the shoulder (**Zlatkin** .,2004).

The lateral angle of the scapula is thick and strong, with an expanded large, shallow glenoid fossa, facing slightly forward and upwards, ready to receive the head of the humerus. Just medial to the glenoid fossa is the coracoid process as it projects upwards from the neck of the scapula. The coracoid process serves as an attachment site for several important ligaments and muscles (**Zlatkin**., 2004).

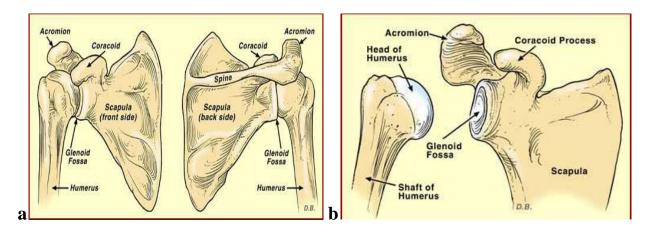


Fig 1. a&b: bones forming shoulder joint (Quoted from Wagner et al.,2002)