Contents

Contonto	
P	Page
List of Abbreviations	II
List of Tables	IV
List of Figures	VI
Introduction and Aim of the Work	1
Review of Literature	4
Chapter I : Obesity	4
Chapter II: Obesity and Hypertension	21
Chapter III: Left Ventricular Hypertrophy	32
Patients and Methods	47
Results	55
Discussion	80
Summary	84
Conclusion	87
Recommendations	89
References	90
Arabic Summary	

LIST OF ABBREVIATIONS

ABPM	Ambulatory blood pressure monitoring
BMI	Body mass index
BP	Blood pressure
BSA	Body surface area
COPD	Chronic obstructive pulmonary disease
CVD	Cardiovascular disease
DBP	Diastolic blood pressure
DCT	Distal convoluting tubules
DT	Deceleration time
ECG	Electrocardiography
EF	Ejection fraction
HCTZ	Hydrochlorothiazide
HFNEF	Heart failure with normal ejection fraction
HTN	Hypertension
IHD	Ischemic heart disease
IVRT	Isovolumic relaxation time
IVSD	Interventricular septal diameter
LA	Left atrium
LAEF	Left atrial ejection fraction
LAVi	Left atrial volume index
LV	Left ventricle
LVDD	Left ventricular diastolic dysfunction
LVH	Left ventricular hypertrophy
LVIDd	Left ventricular internal diameter at end diastole.
LVIDd	Left ventricular internal diameter at end diastole
LVM	Left ventricular mass

LIST OF ABBREVIATIONS (CONT.)

LVMI	Left ventricular mass index
MV	Mitral valve
PWD	Posterior wall diameter
RV	Right ventricle
SBP	Systolic blood pressure
SD	Standard deviation
TDI	Tissue Doppler imaging
W/H ratio	Waist hip ratio
WHO	World Health Organization

List of Tables

Table	Subject	Page
(1)	Normal values of left ventricular mass and	51
	geometry in females.	
(2)	Normal values of left ventricular mass and	52
	geometry in males.	
(3)	Age, sex and hypertension duration for all the	55
	patients.	
(4)	Demographic data of both groups.	56
(5)	Clinical and anthropedic data of both groups.	56
(6)	Echocardiographic data in both obese and	57
	non-obese hypertensive groups.	
(7)	Left ventricular hypertrophy in obese and	59
	non-obese patients.	
(8)	The degree of left ventricular hypertrophy in	61
	obese and non-obese patients.	
(9)	The incidence of different degree of LVH	63
	among obese males and females patients.	
(10)	The incidence of different degree of LVH	63
	among non-obese males and females patients.	
(11)	Global diastolic parameters of both groups.	64
(12)	Tissue Doppler imaging of septal and lateral	67
	mitral annulus of both subgroups.	
(13)	Regional tissue Doppler waves of both	69
	subgroups.	

List of Tables (Cont.)

Table	Subject	Page
(14)	The incidence of diastolic dysfunction as	71
	detected by TDI and conventional Doppler	
	studies in both groups.	
(15)	Regional tissue Doppler imaging and the % of	73
	patients with diastolic dysfunction in obese	
	patients.	
(16)	Regional tissue Doppler imaging and the % of	74
	patients with diastolic dysfunction in non-	
	obese patients.	
(17)	Correlation between TDI e/a and other	75
	variables among obese patients.	
(18)	Correlation between TDI e/a and other	75
	variables among non-obese patients.	

List of Figures

Figure	Subject	Page
(1)	Relationship between mortality and BMI:	7
	relative risks by age group and BMI level	
	from the combined NHANES I, II, and III	
	data set.	
(2)	Representative images of tissue Doppler	40
	imaging .	
(3)	Echocardiographic data in both obese and	58
	non-obese groups.	
(4)	Left ventricular hypertrophy in obese and	60
	non-obese patients.	
(5)	The degree of left ventricular hypertrophy in	62
	obese and non-obese patients.	
(6)	E, A and E/A (Doppler) of both groups.	65
(7)	DT and IVRT (Doppler) of both groups.	66
(8)	The incidence of diastolic dysfunction as	72
	detected by TDI and conventional Doppler	
	studies in both groups.	
(9)	Correlation between TDI e/a versus age	76
	among obese group.	
(10)	Correlation between TDI e/a versus BMI	77
	among obese group.	
(11)	Echocardiographic data of non-obese	78
	hypertensive patient.	
(12)	Echocardiographic data of obese hypertensive	79
	patient.	

الملخص العربي

السمنة في تزايد مستمر وتصل إلى درجة الوباء في انتشارها بالعالم وهي مصحوبة بزيادة في أمراض القلب والأوعية الدموية.

الخلل في الوظائف الإنبساطية للبطين الأيسر و تضخم البطين الأيسر شائع الحدوث في مرضى ضغط الدم المرتفع ولكن قليل من الدراسات ناقشت تأثير السمنة على القلب في مرضى ضغط الدم المرتفع.

دوبلر الموجات فوق الصوتية وسيلة هامة في تقييم الوظائف الإتبساطية للبطين الأيسر و كذلك تقنية دوبلر الأتسجة لها أهمية متصاعدة في دراسة و تقييم الوظائف الإنبساطية للبطين الأيسر.

السمنة مصحوبة بتغيرات في القلب والأوعية الدموية منها الخلل في الوظائف الإنساطية للبطين الأيسرو تضخم البطين الأيسر.

الهدف من البحث:

بحث تأثير السمنة على وظيفة البطين الأيسرومؤشركتلة القلب في مرضى ضغط الدم المرتفع بإستخدام الموجات الصوتية على القلب و تقنية دوبلر الأنسجة.

المرضى و الوسائل:

المرضى الذين ملهم البحث:

الدراسة شملت خمسين مريض مصابون بمرض ارتفاع ضغط الدم السن أكثر من أربعين سنة يتم تقسيم المرضى مجموعتان متساويتان (مجموعة مصابة بالسمنة ومجموعة غير مصابة بالسمنة) محولين لعمل فحص موجات فوق صوتية على القلب.

اشتمل البحث على:

- أخذ التاريخ المرضى
- الفحص الاكلينيكي
 - 0 الفحص المعملي
- موجات فوق صوتية على القلب و تقنية دوبلر الأنسجة للحصول لتقييم
 وظائف القلب الانقباضي والانبساطي ونسبة الدم المندفع من القلب و معامل
 كتلة القلب

النتائج التي أثبتها البحث:

أثبتت الدراسة أن السمنة في مرضى ضغط الدم المرتفع مصحوبة بتأثير واضح على القلب وأن هناك زيادة مؤثرة في معامل كتلة القلب وزيادة في الخلل في الوظائف الإنبساطية للبطين الأيسر لهؤلاء المرضى وذلك بواسطة الموجات الصوتية على القلب و تقنية دوبلر الأنسجة.

وجود علاقة قوية بين وجود خلل في الوظائف الإتبساطية للبطين الأيسر وكلا من السن ومعامل كتلة الجسم في مرضى ضغط الدم المرتفع المصابين بالسمنة.

وقد أثبت دوبللر الأنسجة زيادة في نسبة الخلل الانبساطي للجدار الخلفي في مرضى ضغط الدم المرتفع المصابين بالسمنة.

Tissue Doppler imaging and cardiac mass index in obese and non-obese hypertensive patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

By

Ahmed Moustafa Salama M.B.,B.CH

Under Supervision Of

Prof. Dr. Nagwa Nagy Elmahallawi

Professor of Cardiology
Faculty of Medicine – Ain Shams University

Dr. Mona Moustafa Rayan

Assistant Professor of Cardiology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2010

تقنية دوبلر الأنسجة و مؤشر كتلة القلب في مرضى ضغط الدم المرتفع المصابين وغير المصابين بالسمنة

رسالة مقدمة توطئه للحصول على درجة الماجستير في أمراض القلب من الطبيب / أحمد مصطفى سلامة بكالوريوس الطب والجراحة

تحت إشراف الأستاذ الدكتور / نجوى ناجى المحلاوى أستاذ أمراض القلب والأوعية الدموية كلية الطب – جامعة عين شمس

الدكتور/ منى مصطفى ريان أستاذ مساعد أمراض القلب والأوعية الدموية كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٠

PROTOCOL

Introduction

Left ventricular hypertrophy occurred in athletes, hypertension & hypertrophic cardiomyopathy patients with hypertensive heart disease show a heterogeneous universe of anatomical and functional pattern from a normal asymptomatic stage to a sever hypertrophy and end stage failing heart (Koren et al.,1993).

Doppler tissue imaging is a promising technique that can evaluate the myocardial wave velocities of contraction and relaxation, a parameter that can be significantly affected by left ventricular hypertrophy (M.A Garcia-Fernandez et al., 1999)-(Helene Von Bibra et al., 2000)

Tissue Doppler imaging has been used for annular velocity measurement. Mitral annular velocities during diastole and their relation to mitral inflow velocities

provide additional information about left ventricular filling and diastolic function. (Rodriguez L et al., American H.J. 1996; 131:982-7)

Left ventricular hypertrophy is a common finding in patients with fixed or borderline hypertension and can be diagnosed by either ECG or echocardiography (Lorell and Carabello, 2000)

Tissue Doppler imaging of left ventricular hypertrophy and left ventricular geometry provide additional predictive value of all-cause mortality beyond traditional cardiovascular risk factors (Wang M et al., Hypertension J, 2005 Jan 23(1):183-91)

Left ventricular hypertrophy is a major risk factor for cardiovascular mortality, Tissue Doppler imaging diastolic waves derived from mitral annulus is associated more accurately with cardiac mass index, these TDI diastolic markers seem to be superior in the evaluation of left ventricular hypertrophy in hypertensive patients (A. Kartalis et al., European J of Echo Dec.2006:S109)

Overweight subjects without overt heart disease have sub clinical changes of LV structure and function even

after adjustment for mean arterial pressure, age, gender, and LV mass .(Wong CY et al;Circ J Nov2004;110(19):3081-7).

TDI adds to and clarifies the information on diastolic function provided by mitral valve inflow Doppler and thus is a useful echocardiographic tool for the evaluation of cardiac function, particularly in obese patients. (Haider TA et al; Cardiometab Syndr. J 2006 Winter; 1(1):74-5).

Obesity affects the systolic and the diastolic left ventricular function, obesity is associated with left ventricular hypertrophy. (V M C.Salemi et al; European J of Echo Dec 2007: S113)

Aim of work

In this study we will evaluate the effect of obesity on left ventricular function and cardiac mass index in hypertensive patients using 2-D echocardiography and tissue Doppler imaging.

Patients & Methods

1- The study size:

Fifty hypertensive patients who are referred for echocardiography divided into two equal groups [obese g. (25 patients) &non-obese g. (25 patients)].

2- The study population

A- Inclusion criteria:

Either male or female patients, Age above 40 years old.

Sinus rhythm (by clinical & echocardiography examination)

Hypertensive more than 5 years

Criteria for hypertension are $B.P \ge 140/90$ mm Hg.

The patients will be divided into two equal groups according to the presence of obesity.

Criteria for non-obese group are: body mass index (BMI) is \leq 29, fasting blood glucose \leq 110 mg/dl and normal lipid profile

Criteria for obese group are: body mass index (BMI) is \geq 30 without central obesity, fasting blood glucose \leq 110 mg/dl and normal lipid profile

Referred for echocardiography

B- Exclusion criteria:

Patients with diabetes mellitus (fasting blood glucose > 110 mg/dl)

Patients with coronary artery diseases

Patients with valvular heart diseases

Patients with heart failure or atrial fibrillation

3- Methodology:

All the patients will undergo the following: -

1- History taking

History & duration of hypertension, Drugs used for treatment

2- Clinical assessment

Blood pressure, body weight, body height, no signs or symptoms of angina or coronary artery disease, body mass index (BMI), random blood sugar and lipid profile for all patients.

3- Conventional echocardiography & Tissue Doppler imaging for:

A- Complete 2-D echocardiography to role out associated anomalies and evaluate

cardiac chambers, systolic & diastolic function and ejection fraction, left

ventricle & left atrium assessment in apical four & two chambers view

B- Cardiac mass index by Devereux equation: →

LV mass (g) \approx 1.04 [(LVEDD+IVS+LVPW) 3 -LVEDD 3 -14 corrected for BSA

C- Tissue Doppler imaging of the basal and lateral regions of the mitral