An Evaluation of Antioxidant and Antiviral Actions of Extracts from Certain Plants

Thesis
Submitted for the Master degree in Science
(Microbiology)

By

Marwa Mohamed Abd Elfatah Gado

(B.Sc. Microbiology, 2004)

Supervisors

Prof. Dr. Ahmed Barakat Barakat

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University.

Dr. Sahar A. Hafez Shoman

Assistant Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University.

Dr. Husam El-Din Ahmed Ghanem

Lecturer of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University.

Department of Microbiology Faculty of Science Ain Shams University 2010

Approval sheet

An Evaluation of Antioxidant and Antiviral Actions of Extracts from Certain Plants

By Marwa Mohamed Abd Elfatah Gado

B.Sc. Microbiology, Faculty of Science, Ain Shams University, 2004

7 m Shams Om versity, 2	004
<u>Supervisors</u>	Approved
Prof. Dr. Ahmed Barakat Barakat	
Professor of Microbiology,	
Faculty of Science,	
Ain Shams University.	
Dr. Sahar A. Hafez Shoman	
Assistant Professor of Microbiology,	
Faculty of Science,	
Ain Shams University.	
Dr. Husam El-Din Ahmed Ghanem	
Lecturer of Microbiology	
Faculty of Science,	
Ain Shams University.	
·	
Examination committee	
Prof. Dr.	
Prof. of	
Prof. Dr.	
Prof. of	
PT01. 01	
Date of examination / /	Approval date / /
University Council approved / /	

This dissertation has not been previously submitted for any degree at this or at any other university

Marwa Mohamed Abd Elfatah Gado

ACKNOWLEDGEMENT

First and foremost, I feel always indebted to Allah, the most beneficent and merciful. I can do nothing without Him

I would like to express my deep gratitude and thanks to my dear supervisor Prof. Dr. Ahmed Barakat Barakat, Prof. of Microbiology, Department of Microbiology, Ain shams university, for his help, encouragement, continuous advice, for all his Fatherly assistance and his expert supervision to bring this thesis to more than satisfactory finish.

I gratefully and sincerely thank my dear supervisor Dr. Sahar A. Hafez Shoman, Assistant Prof. of Microbiology, Department of Microbiology, Ain shams university, for her help, continuous support, valuable instructions and guidance from the start of the work. She always was patient, perfect in work organization and the best advisor.

A great thank to Dr. Hussam El-Din Ahmed Ghanem For his support, encouragement, valuable advices and constant help.

A special thank to **Prof. Dr. Abd Elsalam Elnwehy** and **Dr. Sherif Sharawy**, Department of Botany, Faculty of Science, Ain Shams University, For their kindly identification and authentication of the tested plant.

A deep thank to **Microbiology Department** and all **my Colleages** in Microbiology and Botany departments for all their assistance and support.

A great thanks to **My sisters** for their tired with me and continuous help from the start of my study.

Avery special Flower and deep thanks to **My Husband** who have stood by me all through my studies and for his constant support and prayers.

And Finally,

My in depth appreciation goes to **My adorable parents** who learned me the first of everything in my life and without them, this work would not have seen light.

List of Contents

	Page
List of Table	
List of Figures	
List of Abbreviations	
Chapter I: Introduction	1
Chapter II: Review of literature	6
1) Oxidants, Antioxidants and Oxidative Stress	6
1.1 Oxidants	6
1.2 Oxidative stress	8
1.3 Antioxidants	10
1.3.1 Early examination of the role of antioxidant in	
physiological process	11
1.3.2 Types of antioxidants	14
i) Low-molecular weight hydrophilic and lipophilic antioxidants	15
i.1 Ascorbic acid	15
i.2 Vitamin E	16
i.3 Carotenoids	16
i.4 Coenzyme Q (CoQ)	17
i.5 Glutathione	18
ii) Natural Antioxidants, flavonoids and polyphenols	18
ii.1 Phenolics	18
ii.2 Flavonoids	22
ii.3 Coumarins	25
ii.4 Essential oil	26
iii) Enzyme and protein antioxidants	28
2) Plant product as an antiviral agent	31
2.1 The common class of antiviral compounds	34
2.1.1 phenolics and polyphenols	35
2.1.2 Flavonoids	37
2.1.3 Tannins	38
2.1.4 Lignans	39

Contents

2.1.5 Terpenoids and essential oils	40
2.1.6 Quinones	41
2.1.7 Alkaloids	41
2.1.8 Proteins and peptides	42
3) Antioxidants and Antivirals	50
Chapter : Materials and Methods	
1) Virus infectivity assay	58
1.1 Preparation of crude plant extracts	58
1.2 Growth of assay host plants	60
1.3 Preparation of virus inoculums	60
1.4 Antiviral activity of prepared extracts	61
2) Ammonium sulfate precipitation	62
3) Estimation of total proteins	63
4) Estimation of antioxidant activiy (AOA)	63
5) Activity of antioxidant enzymes (catalase, peroxidase and	
superoxide dismutase) against <i>Phaseolus vulgaris</i> treated leaves	67
5.1 Enzyme extraction	67
5.2 Assay of peroxidase activity	68
5.3 Assay of catalase activity	69
5.4 Assay of superoxide dismutase activity	69
6) Partial purification of antiviral proteins from plant extracts	70
6.1 Extraction	71
6.2 Ammonium sulfate precipitation	71
6.3 Ion-exchange chromatography	72
6.3.1. DEAE-Cellulose chromatography	72
6.3.2. CM-Sepharose chromatography	72
6.4 Estimation of protein	73
6.5 Analysis of protein pattern by SDS-PAGE	73
6.6 Estimation of antioxidant activity	77
6.7 Estimation of antiviral activity	77

Contents

Chapter IV: Results

1) Antiviral activities of plant extracts
2) Estimation of total proteins
3) Estimation antioxidant activities (AOA)
4) Activity of antioxidant enzymes (catalase, peroxidase and superoxide dismutase) against <i>Phaseolus vulgaris</i> treated leaves 4.I Peroxidase (POD)
4.II Catalase CAT)
4.III Superoxide dismutase (SOD)
5) Partial purification of antiviral proteins from plant extracts
5.1 Bougainvillea glabra
5.1.1 Estimation of protein
5.1.2 Estimation of antioxidant activity
5.1.3 Estimation of antiviral activity
5.1.4 Analysis of protein pattern by SDS-PAGE
5.2 Chenopodium album
5.2.1 Estimation of protein
5.2.2 Estimation of antioxidant activity
5.2.3 Estimation of antiviral activity
5.2.4 Analysis of protein pattern by SDS-PAGE
Chapter V: Discussion
Chapter VI: Summary
Chapter VII: References
Arabic summary

list of Abbreviations

ABTS 2,2-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid

AIDS Acquired immunodeficiency syndrome

AOA Antioxidant activity

ASSF Ammonium sulfate saturated fraction

AVP Antiviral protein

CAT Catalase

CM Carboxymethyl

CMV Cucumber mosaic virus

CoQ Coenzyme Q

CVD Cardiovascular disease
DAD Diode-array detection
DEAE Diethylaminoethyl

DPPH Diphenyl picrylhydrazyl radical EAVP Endogenous antiviral protein

EFA Essential fatty acids

FR Free radical

FRAP Ferric reducing-antioxidant power

GAE Gallic acid equivalent

GC-MS Gas chromatography-mass spectrometry

GSH Glutathione

H₂O₂ Hydrogen peroxide HCMV Human cytomegalovirus

HIV Human immunodeficiency virus

HO' Hydroxyl radical

HPLC High-performance liquid chromatography

HSV Herpes simplex virus
IAVP Induced Antiviral Protein
ICRSV Indian citrus ring spot virus
IGI Inhibitors from green island
IVR Inhibitor of virus replication

L.L. Local lesions

MCMV Murine cytomegalovirus

 O_2^{\bullet} superoxide radical PAC Proanthocyanidins

PAP Pokeweed antiviral protein

POD Peroxidase

PRP Pathogenisis related proteins

List of Abbreviations

PVX potato virus x

RIP Ribosome inactivating protein

RM Reactive metabolites

RMN Reactive metabolites of nitrogen RMO Reactive metabolites of oxygen

ROS Reactive oxygen species

RSV Human respiratory syncytial virus

RT Reverse transcriptase

SDS- Sodium dodecyle sulfate- polyacrylamide

PAGE gel electrophoresis
SOD superoxide dismutase
SRV Sunnhemp rosette virus
TAC Total antioxidant capacity

TBARS Thiobarbituric acid reactive substances
TEAC Trolox equivalent antioxidant capacity

TMV Tobacco mosaic virus
TNV Tobacco necrosis virus
TPC Total phenolic contents

TRAP Total radical-trapping antioxidant parameter

List of Figures

TD* . 1 .	Describes estimited in Assets I DI and I also I	Page
Fig. 1:	Peroxidase activity in treated <i>Phaseolus vulgaris</i> leaves	90
Fig. 2:	Catalase activity in treated <i>Phaseolus vulgaris</i> leaves	93
Fig. 3:	Superoxide dismutase activity in treated <i>Phaseolus</i> vulgaris leaves	97
Fig. 4:	SDS-PAGE showing protein separation at different stages of <i>Bougainvillea glabra</i> purification	104
Fig. 5:	SDS-PAGE showing protein separation at different stages of <i>Chenopodium album</i> purification	109

List of Tables

		Page
Table a:	A list of different plant species belonging to several families	59
Table b:	Tested samples and reagents used in AOA estimation and the used amount for each one	66
Table 1:	The inhibitory activity of the crude extracts of 12 plant species on the infectivity of TNV onto <i>Phaseolus vulgaris</i> plants	80
Table 2:	Estimation of total protein contents in crude plant extracts and its corresponding ammonium sulfate saturated fractions (40% and 60% ASSFs)	82
Table 3	The antioxidant activities of crude plant extracts and its corresponding ammonium sulfate saturated fractions (40% and 60% ASSFs) of tested plants	85
Table 4:	Comparison between antioxidant activities and protein contents of the crude plant extracts and its corresponding ammonium sulfate saturated	
	fractions	86

List of Tables

Table 5:	Peroxidase activity in <i>Phaseolus vulgaris</i> treated	
	leaves regarding the value of delta change in	
	each treatment	89
Table 6:	Catalase activity in Phaseolus vulgaris treated	
	leaves regarding the value of delta change in each treatment	92
Table 7:	Superoxide dismutase activity in <i>Phaseolus</i> vulgaris treated leaves regarding the value of	
	delta change in each treatment	96
Table 8:	Estimation of total protein contents of <i>Bougainvillea glabra</i> following up purification protocol.	100
Table 9:	Estimation of antioxidant activity during different steps of purification of <i>Bougainvillea</i> glabra extract	101
Table 10:	The antiviral activities of the different Bougainvillea glabra fractions against TNV	
	infectivity onto <i>Phaseolus vulgaris</i> leaves	102

Table 11:	Electrophoretic analysis of protein patterns on	
	10% SDS-PAGE showing different stages of	
	Bougainvillea glabra purification	105
Table 12:	Estimation of total protein contents of	
	Chenopodium album following up purification	
	protocol	106
Table 13:	Estimation of antioxidant activity during	
	different steps of purification of Chenopodium	
	album extract	107
Table 14:	The antiviral activities of the different	
	Chenopodium album fractions against TNV	
	infectivity onto Phaseolus vulgaris leaves	108
Table 15:	Electrophoretic analysis of protein patterns on	
	10% SDS-PAGE showing different stages of	
	Chenopodium album purification	110
Table 16	Comparison between antiviral and antioxidant	
	activities in the crude and in the fractions obtained	
	during purification of Bougainvillea glabra and	
	Chenonodium alhum	113