Recent Applications of Percutaneous USguided Radiofrequency Ablation in Treatment of Breast Cancer

Essay

Submitted for partial fulfillment of the master degree in radio-diagnosis

 $\mathcal{B}y$

Amr Assem Ali Omran M.B., B.CH. Ain-Shams University

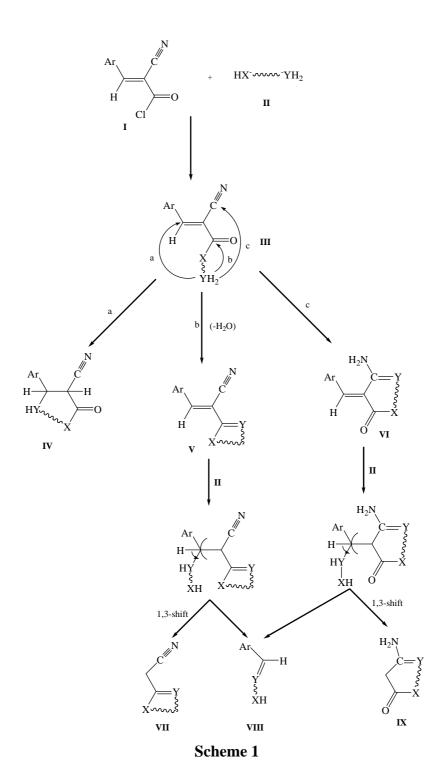
Under Supervision of

Prof. Dr.Sahar Mohammed El-Fiky

Professor of Radio-Diagnosis
Faculty of Medicine Ain-Shams University

Dr. Hosam Moussa Sakr

Lecturer of Radio-Diagnosis
Faculty of Medicine Ain-Shams University


Faculty of Medicine Ain-Shams University **2010**

I. Aims of the work

- 1) The recent widely uses of 2-propenoyl chloride derivatives in synthesis of highly important products as precursor of herbicides¹⁵³, drugs, agrochemicals, pesticides and pharmaceutical intermediate⁶³, ...etc make them worthy to be synthesized and encourage us to use new derivatives of these categories in synthesis analogous of new 2-propenoyl amides,⁹² esters, 70,136,150,164 besides many of interesting biologically and pharmacologically active heterocyclic systems, like, oxadiazoles, 93,125 pyrazoles, 71,84 pyrazolopyrimidines, 45,109 pyridopyrimidines, benzoxbenzimidazoles, 96,161 azoles, 86,106,148 benzoxazine⁶¹ quinazolines, benzothiazepines, 35,170 pyrimidinethiones and other heterocyclic systems.
- 2) The present investigation was planned, also, to study the effect of the 2-cyano group on the reactivity and stability of C₂-C₃ double bond towards different strong to weak nucleophiles, besides its enhancement of nucleophilic addition at C₂-C₃ double bond to give new heterocyclic derivatives.

As mentioned in (**Scheme 1**), strong nucleophiles (hydrazine hydrate and its derivatives) facilitate the breaking of C_2 - C_3 bond.

In general (**Scheme 1**) is suggested, considering the mechanistic details of the studied reactions. The central aspect of this scheme is that there are three different routes for a ring-closure reaction of the primary product \mathbf{III} resulting from an attack of the bifunctional nucleophile \mathbf{II} with its hard nucleophilic center \mathbf{X} at the carbonyl chloride moiety of the adduct \mathbf{I} giving rise to the alternative formation of the products of type \mathbf{IV} , \mathbf{V} , or \mathbf{VI} . These products can be incorporated into consecutive reactions, e.g., with a second equivalent of the nucleophilic reagent \mathbf{II} which reacts subsequently with its soft nucleophilic group \mathbf{Y} at \mathbf{C}_3 of the arylonitrile moiety giving rise to the products of the type \mathbf{VII} , \mathbf{VIII} , or \mathbf{IX} .

Contents

Subject	Page
I. Aim of the work	i
II.Summary	iv
III. Introduction	1
*Synthesis of 2-propenoyl chlorides, amides and	esters1
*Applications and biological activities of 2- prop	enoyl
chlorides, amides and esters	3
*The important methods for preparation of $3,1-(4H)$)-
benzoxazin-4-ones	35
(I) From anthranilic acid derivatives	35
(II) From N-acylanthranilic acid	41
(III) From isocynate derivatives	43
(IV) From oxidation of indoles	44
(V) From Isatoic Anhydrides	45
(VI) From other aromatic heterocyclic rings	48
*Reactions of 4H-3,1-Benzoxazin-4-one	51
1. Reactions with nitrogen nucleophiles	51
(a) Aminolysis	51
(b) Hydrazinolysis	58
(c) Ammonolysis	61
(d) Reaction with sodium azide	62

2. Reaction at the 2-substituent62
3. Reactions with sulphur nucleophiles64
4. Reactions with carbon nucleophiles66
5. Other reactions67
*Biological activity of 4 <i>H</i> -3,1-benzoxazin-4-ones71
* Microwave Irradiation (MWI) and Chemical Reactions72
IV. Discussion73
• Part one
Chapter I: The use of 3-(4\- chlorophenyl) -2- cyano propenoyl
chloride in heterocyclic synthesis73
1) Synthesis of 3-(4\-chlorophenyl)-2-cyano propenoic acid73
2) Synthesis of 3-(4\-chlorophenyl)-2-cyano propenoyl chloride
3) Reaction of acid chloride with anthranilic acid followed by cyclisation74
i) Synthesis of N (2\\-carboxyphenyl)-2-cyano- 3-(4\-chloro-
phenyl) propenamide74
ii) Conversion of (3) to (E) -3- (4\- Chloro- phenyl) -2-
$(4^{\parallel}- \text{ oxo- }4^{\parallel}\text{H-benz }(3,1) \text{ oxazin-}2^{\parallel}- \text{ yl })$ acrylonitrile76
4) Reaction of acid chloride with 2- aminophenol78
5) Reaction of acid chloride with <u>O-phenylene diamine81</u>
6) Reaction of acid chloride with 2-aminopyrine84

7) Reaction of acid chloride with 2-aminoThiophenol86
8) Reaction of acid chloride with benzoyl hydrazine90
9) Reaction of acid chloride with phenyl hydrazine93
10) Reaction of acid chloride with thiourea96
11) Reaction of acid chloride with methylthiourea98
<u>Chapter II:</u> Mass fragmentation of the prepared compounds-101
• Part two
REACTIONS OF BENZOXAZINONE130
1) Reaction of benzoxazinone with formamide and
ammonium acetate130
2) Reaction of benzoxazinone(4) with amino compounds132
3) Reaction of benzoxazinone(4) with hydrazine derivatives
149
4) Reaction of quinazoline with phosphorous penta chloride
153
5) Reaction of chloro quinazoline with amino compounds
154
6) Reaction of quinazoline with benzylchloride160
7) Reaction of quinazoline with phosphorous penta sulphide
163
• Part three
Biological activity165
•

V. Experimental	185
VI. References	210
VII. Arabic Summary	

Chemistry of Heterocyclic Acryloyl Derivatives (amides & esters)

1- Introduction

Acryloyl amides and acryloyl esters are useful reagents for Diel's-Alder reactions ^{126,127} Michael addition and conjugated substitution reactions ^{115,143}.

2- Synthesis of 2-propenoyl chlorides, amides and esters:

2-propenoylamides and esters are commonly prepared from the corresponding acid via the acid chloride 80,115,116,126,127,143,151

The acid chlorides were prepared by heating the acid with chlorinating agent under conditions inhibiting side reaction and polymerization. A preferred chlorinating agent is a volatile reagent, for example, COCl₂, SOCl₂, F₃C-COCl or COCl₂ which form only volatile byproduct. The polymerization is inhibited by using a catalyst which forms an intermediate complex with the chlorinating agent, there by preventing the formation of mixed anhydride³⁷.

The chlorinating agent may afford a halogen exchange, for example, heating 3-bromo acrylic acid with thionyl chloride gave 3-chloro acryloyl chloride^{80,151}. Reaction of 3-(5-aryl-2-furyl)propenoic acid **1** with thionyl

chloride gave thieno[3,2-b]furan-5-carboxyl acid chloride **2** as side product ⁸².

 R_1R_2C =CR-COCl were prepared in 60-83% yield by chlorination of R_1R_2C =CR-CO₂H with SOCl₂/DMF or reflux of R_1R_2C =CR-CONH₄ with COCl₂; R= H, Me; R_1R_2 = H, Br, Cl ¹⁵⁰.

$$\begin{array}{c} Ph\overset{H}{-}C\overset{H}{-}C\overset{H}{-}C - Cl + ROH \longrightarrow Ph\overset{-}{-}C = C\overset{-}{-}C - CR \\ Cl Cl O & H Cl O \\ \hline R = o, m, p-tolyl \\ = o, m, p-NO_2 \end{array}$$

Acrylic acid derivatives $RCH=CHCOR_1$ [R = Cl, Br, I; R_1 = OH, alkoxy, unsubstituted phenoxy, amino, alkylamino, dialkylamino] were prepared and showed fungicidal activity esp. wood. Thus, treating of propiolic acid with NaOBr and Na₂CO₃ gave Br-C C-COOH whose photochemical iodination by iodine in CCl_4 gave Br-Cl=Cl-COOH 103 .

The esters $CH_2=C(CI)-COOCH_2-(CF_2)_n-CF_3$ [n = 0,1,2] were prepared by reaction of $HO-CH_2-(CF_2)-CF_3$ with acrylic acid in the presence of H_2SO_4 or fuming H_2SO_4 , chlorination of the resulting acrylate and removal of HCI from the resulting , -unsaturated dichloro propionate 103 .

3- Applications and biological activities of 2-propenoyl chlorides, amides and esters:

When 2-propenoyl chloride and its substituted derivatives are amidated or esterified, they provide the corresponding amides and esters which have useful applications in the organic synthesis of a variety of chemicals used in our daily life.

Amides **3** were prepared by different methods. Some **3** inhibited coniferyl alc. Dehydrogenose ³⁶.

 $R_1 = H, \ and \ R_2 = Ph, \ pyridyl, \ pyridylalkyl, \ PhCHMe, \ 2\mbox{-}(3\mbox{-}indolyl)ethyl$

OR

 $NR_1R_2 = 2$ -thioxo-3-thiazolidinyl $R_3 = H$, OMe; $R_4 = H$, OH, OMe; $R_5 = H$, OMe.

The benzopyrane derivatives **4** (R_1 , R_4 = H, Alkyl; R_2 = H, Alkoxy; R_3 = H, Alkyl, Alkoxy; n = 0, 1, 2) useful as antiallergics, were prepared by Ejiri, Katsuji ⁴⁰.

Thus a solution of $\mathbf{5}$ (R = OH) and $SOCl_2$ in benzene in the presence of DMF was refluxed to give $\mathbf{5}$ (R = Cl) which was treated with anthranilic acid in benzene in the presence of pyridine to afford 57% of $\mathbf{6}$.

Thiazinobenzimidazol 7 was prepared by reacting of benzimidazol-2-thione with 2-propenoyl chloride derivative and show high herbicidal activity 20,21 .

Esterification of mucochloric acid with propenoyl chloride derivative in benzene gave the furanone derivatives **8** as agrochemical fungicides ⁸³.

o-Alkanoyl phenols $\bf 9$ were treated with cinnamoyl chloride and K_2CO_3 in Me_2CO to yield the chromones $\bf 10^{125}$

HO OH CH₂R₁ + Ph-CH=CH-COCl R₂ O (9)
$$R_1 = H, \text{ Me, Ph} \\ R_2 = H, \text{ OH}$$

$$O \subset CH = CH - Ph$$

$$O \subset CH = CH - Ph$$

$$R_2 = H, OH$$

$$O \subset CH = CH - Ph$$

$$R_2 = H, OH$$

$$O \subset CH = CH - Ph$$

$$R_1 = H, OH$$

$$R_2 = H, OH$$

$$R_2 = H, OH$$

$$R_2 = H, OH$$

$$R_3 = H, OH$$

$$R_4 = H, OH$$

$$R_5 = H, OH$$

Reaction of 3-(3-pyridyl)acryloyl chloride with N-trimethylsilyl-2-piperidinone gave the lactam derivative **11** as interleukin-1- and tumor necrosis factor releasing inhibitor 73 .

$$\begin{array}{c}
O \\
C = C - C - C \\
N =
\end{array}$$

$$\begin{array}{c}
O \\
H H \\
\end{array}$$

$$\begin{array}{c}
O \\
1) \text{ toluene} \\
2) H C \\
\end{array}$$

$$\begin{array}{c}
C - N \\
C = C \\
\end{array}$$

$$\begin{array}{c}
O \\
C = C \\$$

$$\begin{array}{c}
O \\
C = C \\
\end{array}$$

$$\begin{array}{c}
O \\
C = C \\
\end{array}$$

$$\begin{array}{c}
O \\
C$$

Reaction of , -unsaturated acid chloride 12 with primary enaminonitrile 13 in presence of triethyl amine affords under very mild conditions, a simple and highly efficient regiospecific synthesis of poly substituted 3,4-dihydro-2(1H)-pyridones 14^{23} .

Matteucinol 15 which was isolated from *Rhododendron Simsii* and has expectorant activity was prepared by cyclocondensation of 16 with p-

methoxycinnamoyl chloride or by Friedel-Craft's acylation of **16** and cyclocondensation of the resulting **17** with p-methoxy benzaldehyde 165 .

Pyridylquinolinone **18** has positive isotropic activity and was prepared by treatment of 2-methoxy-4-pyridyl aniline **19** with 3-ethoxy-2-propenoyl chloride in THF ⁸⁷.