AIN SHAMS UNIVERSITY
Faculty of Computer &
Information Sciences
Scientific Computing Department

A Memory Efficient Approach for
Arabic Web Crawling

Thesis submitted to the Department of Scientific Computing
Faculty of Computer and Information Sciences
Ain Shams University

In partial fulfillment of the requirements for the degree
of Master in Computer and Information Sciences

By
Doaa Ezzat Mohammed Mahmud

B.Sc. in Computer and Information Sciences (2005)
Ain Shams University — Cairo

Under the supervision of

Prof. Dr. Mohamed F. Tolba

Scientific Computing Department
Faculty of Computer and Information Sciences
Ain Shams University

Dr. Mohamed Abdeen

Computer Science Department
Faculty of Computer and Information Sciences
Ain Shams University

Dr. Nagwa Badr
Information Systems Department
Faculty of Computer and Information Sciences
Ain Shams University

Cairo-2010

Acknowledgement

I acknowledge my deep gratitude to ALLAH the most beneficent and most

merciful, who helped me complete this work on a level that I hope will please the reader.

First of all I would like to thank my dear family, my husband, Mother, Father
and brothers Tarek and Mohamed whose Rindness, care and never ending support and

encouragement made me the person I am today.

Special thanks are due to my supervisors; Prof. Dr. Mohamed Fahmy Tolba, Dr.
Mohamed Abdeen, and Dr. Nagwa Badr at the Faculty of Computer and Information
Sciences, Ain Shams University, who constantly guided me in elaborating this thesis,
assisted me in understanding and analyzing problems, and continuously provided

support and valuable comments.

I would also like to thank Dr. Hossam Mahgoub who made a lot of valuable

contributions and help me finish this worR,

Finally I would like also to thank all my friends who pushed me either directly

or indirectly to finish this work in the moments I thought it never will.

Abstract

The plentiful content of the World Wide Web is useful to millions. Some simply
browse the Web through entry points. But many information seekers use a search
engine to begin their Web activity. In this case, users submit a query, typically a
list of keywords, and receive a list of Web pages that may be relevant, typically
pages that contain the keywords. Now, search engines became very essential
information resources for net users and they form a very important commercial

industry.

Web crawlers represent a significant component in web search engines. They are
responsible for making a local copy of web pages and keeping this local copy up-
to-date by periodically refreshing these pages. This copy is then indexed for further
fulfillment of user queries. Web crawlers start with a set of seed URLs, download
web pages, and extract links from the downloaded pages for further download.

This process is repeated till available resources are exhausted.

Designing an efficient web crawler has many challenges. One of these challenges
is to find an appropriate architecture to distribute the crawling work over multiple
machines. Another challenge is the refreshing policy of the local collection, since
the web is changing very rabidly, it’s very challenging to maintain the local copy
up-to-date, and this requires studying the evolution of web pages. Downloading
important pages first also presents yet another challenge. Due to the massive size
of the web, it is practically impossible to download the whole web. In the literature
the significant part of the web is only considered. Duplicate download avoidance

and language identification are also considered web crawling challenges.

Refreshing web pages is significant for search engines because of the very
dynamic nature of the web. Ideally, a web page should be re-crawled as soon as it
is changed. However, this is practically impossible. Therefore, page change time
needs to be estimated. Researchers found that the only way to predict the change
time in the future is to look at the change history in the past. In other words, the

change rate helps compute the refresh rate.

In the literature a refresh technique, called curve fitting policy, is cited. This
technique is a re-crawl scheduling policy based on the life time of a page. It treats
the page as a set of shingles, and then computes the divergence between each
snapshot and the base snapshot (the first snapshot). Then it obtains number of

change profiles that summarize the change history of the page.

Many web users are interested in Arabic web browsing whether the reason is
academic or commercial. To make the curve fitting policy more suitable for Arabic
web pages, this thesis proposes some modification to this policy. The proposed
technique can reduce the memory consumption by about 90%. It also reduces the

time needed to calculate the refresh rate by about 50%.

This memory efficient web crawler has only one problem. This problem is the
huge delay in the total time. In many cases, the total time after the proposed
modification is more than five times the total time before this modification. To
speed up the crawling process, this thesis proposes a parallel technique for this
Arabic web crawler. This research proved that the optimal number of processors
needed for this parallelization is 10 processors. Using this number of processors,
the total time is reduced by 42% from the sequential time. This parallel technique

is very efficient when applied on web pages with large contents.

II

Table of Contents

Page
Acknowledgement
1] 3 o I
Table of Contents.....cccoiiiiiiiiiiniiiiiiiiiiiiiiiiitiiiisiiiisstcsisstcssnssscsnnsnes I1I
LisSt Of FigUres..ccccviiiieiiiiiiiiiiiiiiiiieiiiiieiiiiietieiiesteiessecssnssscesssscosnnsns VI
List of Tables...ccueiitiieeietiinteieecinneenns VII
1- Introduction 1
1.1 Preliminaries.c.ooeiiiniii 3
1.1.1 The Crawling Module................cooiiiiiiiiiiiii . 3
1.1.2 The Indexing Module...............ccooiiiiiiiiiii. 4
1.1.3 The Page Repository.......ccoovviiiiiiiiiiiiiii i, 6
1.1.4 TheQuery Engine...........ccoooiiiiiiiiiiiiii i, 7
1.1.5 The Page Ranking Module....................oooiiiiiin 8
1.2 Crawling the Web........coooiiiiii e, 9
1.3 MOtIVALION. ...t 11
1.4 OB IVES. ettt et 12
1.5 Thesis Organization.............cevviuiiiiiiiie i ieeaieenn, 12
2- A Survey on Web Crawling 14
2.1 Introduction.ooeiii 14
2.2 Related Work... ... 17
23 Page Selectionooiiiiiiii 19
2.3.1 Importance MeEtriCS........vvvurreniiiieenteeiieeaneanneeannns 20
232 Crawler Models...........ooviiiiiiiii 24
2.3.3 Ordering mMetriCs. .. oueeuueineete et ee e, 25
2.4 Parallel Crawlers.........cooouviiiiiiii e, 26
2.4.1 Architecture of a Parallel Crawler............................... 29
2.42 Crawling Modes for Static Assignment....................... 32
2.43 Evaluation Models.............ccooiiiiiiiiii, 36
2.5 Refreshing Web Pages..........ccoooiiiiiiiiiiiii i, 39
2.5.1 Design Choices for Refreshing Web Pages.................... 39
2.5.2 Page Refresh Policies............ccocovviiiiiiiiiiiiiin.. 44
2.6 COoNCIUSION. ...t 49

111

The Curve Fitting Policy
3.1 INtroducCtion.vvu

32 Theoretical Framework.ooouuniee e,
RIVAN LY (<5 5 (oL T
3.2.2 Optimal Recrawling..............ccoooviiiiiiiiiiii e,

33 Analysisof Web Data...........cooooiiiiii
3.3.1 Information Longevity Distribution...........................
3.3.2 Generative Model...............cooiiiiiiiii

3.4 The Curve Fitting Policy............oooiiii
3.4.1 Change Profiles.........ccovviiiiiiiiiiiii e,
342 The Algorithm..........ooooiiiiiiiiii e,
3.4.3 Setting the Utility Threshold...........................
344 Bounding Risk.............ooi
3.4.5 The Curve Fitting Policy versus Other Approaches.......

3.5 ConCIUSION. ..ot

Memory Efficient Arabic Web Crawling

4.1 Introduction.........ccoeiiniii
4.2 The proposed Technique...........ccoviiiiiiiiii i,
4.3 Experimental Results...............cooiiiiiiiiiii
4.4 707511 1013 10 o

Performance Enhancement of the Modified Algorithm
5.1 INtroduction..........ooouiiiii i

5.2 The Proposed Parallelization..................coooiiiiiiiiiiiin,

53 Experimental Results................oooiiiiiiiii
5.3.1 Performance Enhancement............................ooeall.
5.3.2 Efficiency Evaluation...................cooiiiiiiiiiin .

54 07073161 10 3 10 s FO

Conclusions & Future Work
6.1 SUMMATY . ..t

6.1.2 Performance Enhancement of the Modified Algorithm.....
6.2 Future Worke.... ..o

6.2.1 The Effect on the Refresh Period...........................o..l.

6.2.2 Other Parallel Techniques..................ccooiiiiiiiiann...

v

50
50

52
52
55

56
56
57
58
59
59
61
61
62
62

64
64
65
70
73

74
74
75
77
78
80
82

84
84
84
85
87
87
88

L 2 S (5 Q) 1 T < TN
Publications
Arabic Summary

90

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1.1
1.2
2.1
2.2
2.3
24
2.5
2.6

2.7

3.1
3.2

4.1
4.2

5.1
5.2
53
54

List of Figures

The general architecture of search engines...................
The basic stages of the indexer....................coovevieenne.
Awebcrawler........ooooiiiiii
General architecture of a parallel crawler.....................
Site S, 1s crawled by C, and site S, is crawled by C,.......
Summary of the options of a parallel crawler
Two possible crawlers and their advantages

Synchronization frequency as a function of change
frequency for freshness optimization..........................
Synchronization frequency as a function of change
frequency for age optimization................c.ooooiiiian.n.
Temporal behavior of two web pages.........................

Change frequency versus information longevity.............

The steps of the modified algorithm....................... ...
Average percentage of content size after each step..........

Elapsed time for each policy...............cooiiiiiiiin,
Elapsed time versus number of processors....................
Performance versus number of processors,,..................
Normalized performance versus number of processors........

VI

14
29
32
36
44

47

48
51

56

67
71

74
78
81
82

Table 2.1
Table 2.2
Table 2.3
Table 4.1
Table 4.2
Table 5.1
Table 5.2

List of Tables

Comparison of three crawling modes..........cc.ceeevuereennnnenn..

Comparison between
Comparison between

periodic and incremental crawlers..
In-place and Shadowing updates....

Comparison of the four policies.................oooiiin.e
Reduction in page content S1ze.............cocevvvnveennnnnnn..
Percentage of redundant content before merge...............

The ASR stage times for large page contents using different

number of processors

VII

38
40
43
70
71
79

81

Chapter 1: Introduction 1

Chapter 1

Introduction

Search engines are enabling tools to mine the massive information content of the
World Wide Web. They are very useful for many information seekers on the web.
They have evolved over the last two decades until reaching the level of maturity

we see today, encompassing, quick, and easy to use.

There are many challenges in building good search engines. One of these
challenges is the continuous and rapid growth of the web. The growth rate of the
web is even more dramatic. According to [1], and [2], the size of the web has

doubled in less than two years.

Aside from the newly created pages, the existing pages are continuously updated
[3], [4], [5], [6]. For example, in a study of over half a million pages over 4
months [6], it's found that about 23% of pages changed daily. In the .com domain
40% of the pages changed daily, and the half-life of pages is about 10 days (in 10
days half of the pages are gone, i.e., their URLs are no longer valid). In [6], it's

reported that a Poisson process is a good model for web page changes.

Another challenge is the interlinked nature of the web that sets it apart from many
other collections. Several studies aim to understand how the web's linkage is
structured and how that structure can be modeled [7], [8], [9], [10], [6]. One study,
for example, suggests that the link structure of the web is somewhat like a "bow-
tie" [7]. That is, about 28% of the pages constitute a strongly connected core (the
center of the bow tie). About 22% form one of the tie's loops: these are pages that

can be reached from the core but not vice versa. The other loop consists of 22% of

2 Chapter 1: Introduction

the pages that can reach the core, but cannot be reached from it. The remaining

nodes can neither reach the core nor can be reached from the core.

Search engines have main five components [11], as shown in Figure 1.1:
1- A crawling module for downloading web pages.
2- An indexing module for generating a lookup table for the downloaded
pages.
3- A page repository for containing a local copy of the downloaded pages.
4- A query engine for fulfilling the user queries.
5- A page ranking module for sorting the search results.

Page Repository

Crawlers —\ Queyies Rl\ults

o 3 ok
e wil g Bt
3 Indexer Engine Module
Module
- l
Crawl
Control Indexes

Usage Feedback

Figure 1.1: The general architecture of search engines.

The crawling module is responsible for making a local copy of web pages and
keeping this local copy up-to-date by periodically refreshing these pages. The
decision to refresh a web page is a tradeoff between the resource utilization and
the freshness of the page content. There are various policies as to when to perform
a page refresh. One of these policies is the curve fitting policy [12]. This policy

depends on the information longevity.

Chapter 1: Introduction 3

The following sections are organized as follows: section 1 provides a detailed
description for each component in the search engine. Section 2 focuses on the web
crawling. Section 3 highlights the motivation of the work presented in this thesis.
A summarized explanation for the main objectives of the work presented in this
thesis is given in section 4. And finally section 5 outlines the organization of the

remaining parts of the thesis.

1.1 Preliminaries

The general architecture of the search engine is described in the following sub-

sections.

1.1.1 The Crawling Module

Every engine relies on a crawler module to provide the grist for its operation
(shown on the left in Figure 1.1). Crawlers are small programs that "browse' the
web on the search engine's behalf, similarly to how a human user would follow
links to reach different pages. The programs are given a starting set of URLs,
whose pages they retrieve from the web. The crawlers extract URLs appearing in
the retrieved pages, and give this information to the crawler control module. This
module determines what links to visit next, and feeds the links to visit back to the
crawlers. (Some of the functionality of the crawler control module may be
implemented by the crawlers themselves.) The crawlers also pass the retrieved
pages into a page repository. Crawlers continue visiting the web, until local

resources, such as storage, are exhausted.

This basic algorithm is modified in many variations that give search engines

different levels of coverage or topic bias. For example, crawlers in one engine

4 Chapter 1: Introduction

might be biased to visit as many sites as possible, leaving out the pages that are
buried deeply within each site. The crawlers in other engines might specialize on
sites in one specific domain, such as governmental pages. The crawl control

module is responsible for directing the crawling operation.

Once the search engine has been through at least one complete crawling cycle, the
crawl control module may be informed by several indexes that were created during
the earlier crawl(s). The crawl control module may, for example, use a previous
crawl's link graph to decide which links the crawlers should explore, and which
links they should ignore. Crawl control may also use feedback from usage patterns
to guide the crawling process (connection between the query engine and the crawl

control module in Figure 1.1).

1.1.2 The Indexing Module

The indexing module is responsible for the process of generating a lookup table
with all the URLSs that point to pages containing a given word. This module is the
most critical part of any search engine as it is considered its core. To index the
web is quite a challenging task. Firstly, it requires huge resources and takes days
to complete. Secondly, periodic crawling and rebuilding of the index is necessary
because the contents of the web change rapidly and most incremental indexing-
techniques perform poorly with huge changes. Finally, storage formats for the
index must be carefully designed, for example, a compressed index may improve
query performance, however, there is a tradeoff between this performance gain

and the decompression overhead at query time.

The basic stages for indexing are as follows:
1- Extracting all the words from each document.

2- Removing stop words (e.g. an, and, by, for, of, the, etc...).

Chapter 1: Introduction 5

3- Normalizing words.
4- Eliminating very high and very low frequency terms.

5- Assigning a term weight using statistics.

Figure 1.2: The basic stages of the indexer.

There are several types of indexes [11]. A link index represents a graph for the
crawled portion of the web, with nodes (pages) and edges (hypertext links). Text
index, however, 1s a lookup for identifying pages relevant to a query. The utility
index provides access to pages of a given length, pages of a certain importance, or

pages with some number of images in them.

Text index may be one of the following: inverted files, suffix arrays, and signature
files. The inverted indexes are the most commonly used in indexing web pages.
The inverted index structure is defined as follows:
e Aninverted index over a collection of web pages consists of a set of
inverted lists, one for each word (or index term).
e The inverted list for a term is a sorted list of locations where it appears in
the collection.
e The posting is a pair of an index term w, and a corresponding location, /.
e Most text-indexes maintain a lexicon (a list of all the terms in the index

with some term-level statistics).

6 Chapter 1: Introduction

BTrees, first presented in [13], are data structures that are commonly used in
indexing large amount of data items. All leaves in a BTree are maintained on the
same level. A very large number of items can be stored in a BTree of a small
height. Furthermore, the maximum height of a BTree index determines the
maximum number of accesses for a search, so the search time will be minimized if
BTrees are used in indexing a very large amount of documents. It is argued that

BTrees are ideal for indexing web pages [14], [15].

1.1.3 The Page Repository

The page repository is defined as follows: A cache of the visited pages that is
maintained by a search engine beyond the time required to build the index. This
cache allows serving out result pages quickly. It performs two basic functions:
First, it is an interface for the crawler to store pages. Second, it provides an

efficient access for the indexing module to retrieve the pages.

The challenges for page repository are:

1- Scalability: It must be distributed across a cluster of computers because of
the huge size of the web.

2- Dual access modes: It must support two different access modes: Random
access 1s used to quickly retrieve a specific page to the end user. Streaming
access is used to receive the entire collection to the indexing module.

3- Large bulk updates: It must handle modifications. As new versions of pages
are received, the space of old versions is reclaimed. Also conflicts between
updating and accessing must be avoided.

4- Obsolete pages: It must have a mechanism for detecting and removing

obsolete pages.

There are two policies for page distribution among repository nodes [11]:

