

AA MMeemmoorryy EEffffiicciieenntt AApppprrooaacchh ffoorr
AArraabbiicc WWeebb CCrraawwlliinngg

Thesis submitted to the Department of Scientific Computing

Faculty of Computer and Information Sciences

Ain Shams University

In partial fulfillment of the requirements for the degree

of Master in Computer and Information Sciences

By

DDooaaaa EEzzzzaatt MMoohhaammmmeedd MMaahhmmuudd
B.Sc. in Computer and Information Sciences (2005)

Ain Shams University – Cairo

Under the supervision of

PPrrooff.. DDrr.. MMoohhaammeedd FF.. TToollbbaa
Scientific Computing Department

Faculty of Computer and Information Sciences

Ain Shams University

DDrr.. MMoohhaammeedd AAbbddeeeenn
Computer Science Department

Faculty of Computer and Information Sciences

Ain Shams University

DDrr.. NNaaggwwaa BBaaddrr
Information Systems Department

Faculty of Computer and Information Sciences

Ain Shams University

Cairo-2010

AIN SHAMS UNIVERSITY

Faculty of Computer &

Information Sciences

Scientific Computing Department

Acknowledgement

I acknowledge my deep gratitude to ALLAH the most beneficent and most

merciful, who helped me complete this work on a level that I hope will please the reader.

First of all I would like to thank my dear family, my husband, Mother, Father

and brothers Tarek and Mohamed whose kindness, care and never ending support and

encouragement made me the person I am today.

Special thanks are due to my supervisors; Prof. Dr. Mohamed Fahmy Tolba, Dr.

Mohamed Abdeen, and Dr. Nagwa Badr at the Faculty of Computer and Information

Sciences, Ain Shams University, who constantly guided me in elaborating this thesis,

assisted me in understanding and analyzing problems, and continuously provided

support and valuable comments.

I would also like to thank Dr. Hossam Mahgoub who made a lot of valuable

contributions and help me finish this work.

Finally I would like also to thank all my friends who pushed me either directly

or indirectly to finish this work in the moments I thought it never will.

I

Abstract

The plentiful content of the World Wide Web is useful to millions. Some simply

browse the Web through entry points. But many information seekers use a search

engine to begin their Web activity. In this case, users submit a query, typically a

list of keywords, and receive a list of Web pages that may be relevant, typically

pages that contain the keywords. Now, search engines became very essential

information resources for net users and they form a very important commercial

industry.

Web crawlers represent a significant component in web search engines. They are

responsible for making a local copy of web pages and keeping this local copy up-

to-date by periodically refreshing these pages. This copy is then indexed for further

fulfillment of user queries. Web crawlers start with a set of seed URLs, download

web pages, and extract links from the downloaded pages for further download.

This process is repeated till available resources are exhausted.

Designing an efficient web crawler has many challenges. One of these challenges

is to find an appropriate architecture to distribute the crawling work over multiple

machines. Another challenge is the refreshing policy of the local collection, since

the web is changing very rabidly, it’s very challenging to maintain the local copy

up-to-date, and this requires studying the evolution of web pages. Downloading

important pages first also presents yet another challenge. Due to the massive size

of the web, it is practically impossible to download the whole web. In the literature

the significant part of the web is only considered. Duplicate download avoidance

and language identification are also considered web crawling challenges.

II

Refreshing web pages is significant for search engines because of the very

dynamic nature of the web. Ideally, a web page should be re-crawled as soon as it

is changed. However, this is practically impossible. Therefore, page change time

needs to be estimated. Researchers found that the only way to predict the change

time in the future is to look at the change history in the past. In other words, the

change rate helps compute the refresh rate.

In the literature a refresh technique, called curve fitting policy, is cited. This

technique is a re-crawl scheduling policy based on the life time of a page. It treats

the page as a set of shingles, and then computes the divergence between each

snapshot and the base snapshot (the first snapshot). Then it obtains number of

change profiles that summarize the change history of the page.

Many web users are interested in Arabic web browsing whether the reason is

academic or commercial. To make the curve fitting policy more suitable for Arabic

web pages, this thesis proposes some modification to this policy. The proposed

technique can reduce the memory consumption by about 90%. It also reduces the

time needed to calculate the refresh rate by about 50%.

This memory efficient web crawler has only one problem. This problem is the

huge delay in the total time. In many cases, the total time after the proposed

modification is more than five times the total time before this modification. To

speed up the crawling process, this thesis proposes a parallel technique for this

Arabic web crawler. This research proved that the optimal number of processors

needed for this parallelization is 10 processors. Using this number of processors,

the total time is reduced by 42% from the sequential time. This parallel technique

is very efficient when applied on web pages with large contents.

 III

Table of Contents

 Page

Acknowledgement

Abstract…………………………………………………………………………... I

Table of Contents………………………………………………………………... III

List of Figures……………………………………………………………………. VI

List of Tables……………………………………………………………………. VII

1- Introduction 1

 1.1 Preliminaries……………………………………………………….

1.1.1 The Crawling Module……………………………………..

1.1.2 The Indexing Module……………………………………..

1.1.3 The Page Repository……………………………………….

1.1.4 The Query Engine…………………………………………

1.1.5 The Page Ranking Module………………………………..

3

3

4

6

7

8

 1.2 Crawling the Web……………….…………………………………. 9

 1.3 Motivation………………………………………………………… 11

 1.4 Objectives……………………………………………………......... 12

 1.5 Thesis Organization………………………………………………. 12

2- A Survey on Web Crawling 14

 2.1 Introduction….……………………………………………………. 14

 2.2 Related Work………….………….………………………………. 17

 2.3 Page Selection …………………………………………………….. 19

 2.3.1 Importance metrics….……………………………………. 20

 2.3.2 Crawler Models.…………………….…………………….. 24

 2.3.3 Ordering metrics.…………………………………………. 25

 2.4 Parallel Crawlers…………………………………………………..

2.4.1 Architecture of a Parallel Crawler………………………….

2.4.2 Crawling Modes for Static Assignment…………………..

2.4.3 Evaluation Models………………………………………..

26

29

32

36

 2.5

2.6

Refreshing Web Pages……………………………………………..

2.5.1 Design Choices for Refreshing Web Pages………………..

2.5.2 Page Refresh Policies………………………………………

Conclusion…………………………………………………………

39

39

44

49

 IV

3- The Curve Fitting Policy 50

 3.1 Introduction………………………………………………………. 50

 3.2 Theoretical Framework……………….…………………………..

3.2.1 Metrics…………………………………………………….

52

52

 3.2.2 Optimal Recrawling…..…………….…………………….. 55

 3.3 Analysis of Web Data………….………………………………….

3.3.1 Information Longevity Distribution………………………

3.3.2 Generative Model…………………………………………

56

56

57

 3.4

3.5

The Curve Fitting Policy………………………………………….

3.4.1 Change Profiles……………………………………………

3.4.2 The Algorithm……………………………………………..

3.4.3 Setting the Utility Threshold……………………………..

3.4.4 Bounding Risk…………………………………………….

3.4.5 The Curve Fitting Policy versus Other Approaches…….

Conclusion…………………………………………………………

58

59

59

61

61

62

62

4- Memory Efficient Arabic Web Crawling 64

 4.1 Introduction………..…………………….……………………….. 64

 4.2 The proposed Technique…………………………………………... 65

 4.3 Experimental Results…….…………….………………………… 70

 4.4 Conclusion…………………………………………………………. 73

5- Performance Enhancement of the Modified Algorithm 74

 5.1 Introduction………………………………………………………. 74

 5.2 The Proposed Parallelization…………………………………….. 75

 5.3 Experimental Results…………………………………….………. 77

 5.3.1 Performance Enhancement…..…….……………………… 78

 5.3.2 Efficiency Evaluation………………………………………. 80

 5.4 Conclusion…………………………………………………………. 82

6- Conclusions & Future Work 84

 6.1 Summary…………………………………………………………. 84

 6.1.1 Memory Efficient Arabic Web Crawling….……………… 84

 6.1.2 Performance Enhancement of the Modified Algorithm..… 85

 6.2 Future Work……………………………………………………….. 87

 6.2.1 The Effect on the Refresh Period……………..…………... 87

 6.2.2 Other Parallel Techniques.………………………………… 88

 V

References………………………………………………………………..... 90

Publications

Arabic Summary

 VI

List of Figures

Fig. 1.1 The general architecture of search engines………………. 2

Fig. 1.2 The basic stages of the indexer…………………............... 5

Fig. 2.1 A web crawler…………………………………………….. 14

Fig. 2.2 General architecture of a parallel crawler………………… 29

Fig. 2.3 Site S1 is crawled by C1 and site S2 is crawled by C2……. 32

Fig. 2.4 Summary of the options of a parallel crawler …………… 36

Fig. 2.5 Two possible crawlers and their advantages ……………… 44

Fig. 2.6 Synchronization frequency as a function of change

frequency for freshness optimization……………………..

47

Fig. 2.7 Synchronization frequency as a function of change

frequency for age optimization……………………………

48

Fig. 3.1 Temporal behavior of two web pages……………………. 51

Fig. 3.2 Change frequency versus information longevity……….... 56

Fig. 4.1 The steps of the modified algorithm……………………… 67

Fig. 4.2 Average percentage of content size after each step…….... 71

Fig. 5.1 Elapsed time for each policy………………….………….. 74

Fig. 5.2 Elapsed time versus number of processors..…..…………. 78

Fig. 5.3 Performance versus number of processors,,……………… 81

Fig. 5.4 Normalized performance versus number of processors..…... 82

 VII

List of Tables

Table 2.1 Comparison of three crawling modes................................ 38

Table 2.2 Comparison between periodic and incremental crawlers.. 40

Table 2.3 Comparison between In-place and Shadowing updates…. 43

Table 4.1 Comparison of the four policies………………………….. 70

Table 4.2 Reduction in page content size…………………………… 71

Table 5.1 Percentage of redundant content before merge…………… 79

Table 5.2 The ASR stage times for large page contents using different

number of processors………………………………………

81

Chapter 1: Introduction 1

Chapter 1

Introduction

Search engines are enabling tools to mine the massive information content of the

World Wide Web. They are very useful for many information seekers on the web.

They have evolved over the last two decades until reaching the level of maturity

we see today, encompassing, quick, and easy to use.

There are many challenges in building good search engines. One of these

challenges is the continuous and rapid growth of the web. The growth rate of the

web is even more dramatic. According to [1], and [2], the size of the web has

doubled in less than two years.

Aside from the newly created pages, the existing pages are continuously updated

[3], [4], [5], [6]. For example, in a study of over half a million pages over 4

months [6], it's found that about 23% of pages changed daily. In the .com domain

40% of the pages changed daily, and the half-life of pages is about 10 days (in 10

days half of the pages are gone, i.e., their URLs are no longer valid). In [6], it's

reported that a Poisson process is a good model for web page changes.

Another challenge is the interlinked nature of the web that sets it apart from many

other collections. Several studies aim to understand how the web's linkage is

structured and how that structure can be modeled [7], [8], [9], [10], [6]. One study,

for example, suggests that the link structure of the web is somewhat like a "bow-

tie" [7]. That is, about 28% of the pages constitute a strongly connected core (the

center of the bow tie). About 22% form one of the tie's loops: these are pages that

can be reached from the core but not vice versa. The other loop consists of 22% of

2 Chapter 1: Introduction

the pages that can reach the core, but cannot be reached from it. The remaining

nodes can neither reach the core nor can be reached from the core.

Search engines have main five components [11], as shown in Figure 1.1:

1- A crawling module for downloading web pages.

2- An indexing module for generating a lookup table for the downloaded

pages.

3- A page repository for containing a local copy of the downloaded pages.

4- A query engine for fulfilling the user queries.

5- A page ranking module for sorting the search results.

Figure 1.1: The general architecture of search engines.

The crawling module is responsible for making a local copy of web pages and

keeping this local copy up-to-date by periodically refreshing these pages. The

decision to refresh a web page is a tradeoff between the resource utilization and

the freshness of the page content. There are various policies as to when to perform

a page refresh. One of these policies is the curve fitting policy [12]. This policy

depends on the information longevity.

Chapter 1: Introduction 3

The following sections are organized as follows: section 1 provides a detailed

description for each component in the search engine. Section 2 focuses on the web

crawling. Section 3 highlights the motivation of the work presented in this thesis.

A summarized explanation for the main objectives of the work presented in this

thesis is given in section 4. And finally section 5 outlines the organization of the

remaining parts of the thesis.

1.1 Preliminaries

The general architecture of the search engine is described in the following sub-

sections.

1.1.1 The Crawling Module

Every engine relies on a crawler module to provide the grist for its operation

(shown on the left in Figure 1.1). Crawlers are small programs that `browse' the

web on the search engine's behalf, similarly to how a human user would follow

links to reach different pages. The programs are given a starting set of URLs,

whose pages they retrieve from the web. The crawlers extract URLs appearing in

the retrieved pages, and give this information to the crawler control module. This

module determines what links to visit next, and feeds the links to visit back to the

crawlers. (Some of the functionality of the crawler control module may be

implemented by the crawlers themselves.) The crawlers also pass the retrieved

pages into a page repository. Crawlers continue visiting the web, until local

resources, such as storage, are exhausted.

This basic algorithm is modified in many variations that give search engines

different levels of coverage or topic bias. For example, crawlers in one engine

4 Chapter 1: Introduction

might be biased to visit as many sites as possible, leaving out the pages that are

buried deeply within each site. The crawlers in other engines might specialize on

sites in one specific domain, such as governmental pages. The crawl control

module is responsible for directing the crawling operation.

Once the search engine has been through at least one complete crawling cycle, the

crawl control module may be informed by several indexes that were created during

the earlier crawl(s). The crawl control module may, for example, use a previous

crawl's link graph to decide which links the crawlers should explore, and which

links they should ignore. Crawl control may also use feedback from usage patterns

to guide the crawling process (connection between the query engine and the crawl

control module in Figure 1.1).

1.1.2 The Indexing Module

The indexing module is responsible for the process of generating a lookup table

with all the URLs that point to pages containing a given word. This module is the

most critical part of any search engine as it is considered its core. To index the

web is quite a challenging task. Firstly, it requires huge resources and takes days

to complete. Secondly, periodic crawling and rebuilding of the index is necessary

because the contents of the web change rapidly and most incremental indexing-

techniques perform poorly with huge changes. Finally, storage formats for the

index must be carefully designed, for example, a compressed index may improve

query performance, however, there is a tradeoff between this performance gain

and the decompression overhead at query time.

The basic stages for indexing are as follows:

1- Extracting all the words from each document.

2- Removing stop words (e.g. an, and, by, for, of, the, etc...).

Chapter 1: Introduction 5

3- Normalizing words.

4- Eliminating very high and very low frequency terms.

5- Assigning a term weight using statistics.

Figure 1.2: The basic stages of the indexer.

There are several types of indexes [11]. A link index represents a graph for the

crawled portion of the web, with nodes (pages) and edges (hypertext links). Text

index, however, is a lookup for identifying pages relevant to a query. The utility

index provides access to pages of a given length, pages of a certain importance, or

pages with some number of images in them.

Text index may be one of the following: inverted files, suffix arrays, and signature

files. The inverted indexes are the most commonly used in indexing web pages.

The inverted index structure is defined as follows:

· An inverted index over a collection of web pages consists of a set of

inverted lists, one for each word (or index term).

· The inverted list for a term is a sorted list of locations where it appears in

the collection.

· The posting is a pair of an index term w, and a corresponding location, l.

· Most text-indexes maintain a lexicon (a list of all the terms in the index

with some term-level statistics).

6 Chapter 1: Introduction

BTrees, first presented in [13], are data structures that are commonly used in

indexing large amount of data items. All leaves in a BTree are maintained on the

same level. A very large number of items can be stored in a BTree of a small

height. Furthermore, the maximum height of a BTree index determines the

maximum number of accesses for a search, so the search time will be minimized if

BTrees are used in indexing a very large amount of documents. It is argued that

BTrees are ideal for indexing web pages [14], [15].

1.1.3 The Page Repository

The page repository is defined as follows: A cache of the visited pages that is

maintained by a search engine beyond the time required to build the index. This

cache allows serving out result pages quickly. It performs two basic functions:

First, it is an interface for the crawler to store pages. Second, it provides an

efficient access for the indexing module to retrieve the pages.

The challenges for page repository are:

1- Scalability: It must be distributed across a cluster of computers because of

the huge size of the web.

2- Dual access modes: It must support two different access modes: Random

access is used to quickly retrieve a specific page to the end user. Streaming

access is used to receive the entire collection to the indexing module.

3- Large bulk updates: It must handle modifications. As new versions of pages

are received, the space of old versions is reclaimed. Also conflicts between

updating and accessing must be avoided.

4- Obsolete pages: It must have a mechanism for detecting and removing

obsolete pages.

There are two policies for page distribution among repository nodes [11]:

