Study of serum hepcidin in Hereditary hemolytic anemias

Thesis

Submitted for partial fulfillment
Of The MD Degree
Of Pediatrics

Submitted by

Hossam El-Din Maged Abdel Rahman Mohamed M.B.B.Ch,

Misr University for Science and Technology (MUST) University

Msc. Ain Shams University

Under supervision of

Prof. Dr. Amal El Beshlawy

Professor of Pediatrics Faculty of Medicine Cairo University

Prof. Dr. Ibrahim El Araby

Professor of Pediatrics Faculty of Medicine MUST University

Dr. Mohamed Salah
El-Din Mohamed
Lecturer of Pediatrics
Faculty of Medicine
(MUST) University

Dr. Dina Hesham
Ahmed
Lecturer of Clinical Pathology
Faculty of Medicine
Cairo University

قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم

صدق الله العظيم

(البقرة ٣٢)

Dedicated To:

My Father & My Mother

Maged Abdel-Rahman Mohamed Sanaa Mohamed Ali

My Wife & My Sons

Dr. Nermeen Salah Omar & Ali

And my brother

Dr. Mohamed Maged

<u>ACKNOWLEDGMENT</u>

Heart to heart talk

Glory to ALLAH, most high full of grace and mercy. To him I owe sincere prayers of thanks. Truely without his grace and guidance this work couldn't have been possible.

It gives me great pleasure to express deep and everlasting gratitude to Prof. **Dr. Amal El Beshlawy**, Professor of Pediatrics Cairo University, for choosing the subject and her continuous encouragement during supervision this work.

Also I wish to express my deepest gratitude to Prof. **Dr. Ibrahim El Araby,** Professor of Pediatrics, Misr University for Science and Technology (MUST), whose guide and help were a real drive to complete this work.

My deepest thanks to **Dr. Mohamed Salah El-Din Mohamed**, Lecturer of Pediatrics, Misr University for Science and Technology (MUST) for his kind help, indispensable advice, and valuable comments during the course of the study.

I am also indebted to **Dr. Dina Hisham Ahmed**, Lecturer of Clinical and Chemical Pathology, Cairo University, for her effort in the laboratory work and her meticulous help.

My hearty thanks and indebtedness to each and every member of my family is beyond measure for their understanding and support during the preparation of the whole work.

Last but not least, I submit my deep thanks for the great favour done to me and all collegues of MUST giving all the chance and pave the way for better university education, I honestly express my great thanks to the founder of MUST being the first MUST graduate to have achieved M.D. degree.

Abstract

Study of serum hepcidin in hereditary hemolytic anemias

(Key words): Hereditary haemolytic anemias, Thalassemia, hepcidin, iron overload disorders.

Thalassemia, the most common genetic disorder in Egypt, is a major health problem with an estimated carrier rate of 5.3%-9%. Registered cases in large centers in Egypt in September 2007 were 9912 cases, and in Cairo University hematology clinic were 2597 cases. Hepcidin, a 25 amino-acid peptide hormone synthesized in the liver is the key regulator of iron homeostasis. We measured the level of hepcidin in congenital chronic hemolytic anemias including sickle cell anemia, hereditary spherocytosis, thalassemia syndromes. This study revealed the decrease of hepcidin level in all congenital chronic hemolytic anemias in comparison to control. The use of hepcidin as an adjuvant therapy with oral iron chelators is important as it has a vital role in combating hemosidrosis.

LIST OF ABBREVIATIONS

ACD : Anemia of chronic disease

AML : Acute myleogenous leukemia

ATCUN : Amino terminal Cu and Ni binding

BMD : Bone mineral density

BMP : Bone morphogenetic protein

CFU-E : Colony-forming unit-erythroid

CHr : Reticulocyte hemoglobin content

CKD : Chronic kidney disease

CV : Coefficient of variance

CVAD : Central vascular access devices

DFO : Desferrioxamine

DFP : Deferiprone

DMT1 : Divalent metal transporter 1

DNA : Deoxy ribonucleic acid

EPO : Erythropoietin

ESAs : Erythropoiesis-stimulating agents

FE (2+) : Ferrous

FE (**3**+) : Ferric

FID : Functional iron deficiency

FPN1 : Ferroportin-1

HAMP : Hepcidin antimicrobial peptide

HAART : Highly Active Anti-Retroviral Therapy

HB : Hemoglobin

HCP : Heme-carrier protein

HCV : Hepatitis C virus

HFE : Haemochromatosis gene

HH : Hereditary Haemochromatosis

HIF : Hypoxia-inducible transcription factor

HII : Hepatic iron index

HJV : Haemojuvelin

HO : Heme oxygenase

HS : Hereditary shperocytosis

HSCT : Hematopoietic stem cell transplantation

ID : Iron deficiency

IDA : Iron deficiency anemia

IFN : Interferon

IFU : Instructions for use

IL : Interleukin

IRE/IRP System: Iron responsive element/Iron regulatory protein

IRIDA : Iron refractory iron-deficiency anemia

LEAP : Liver-expressed antimicrobial peptide

LIC : Liver iron concentration

LPS : Lipopolysaccharide

MCV : Mean corpuscular volume

MCHC : Mean corpuscular hemoglobin concentration

MDS : Myelodysplastic syndromes

MS : Mass spectrometry

OD : Optical denisty

OPG : Osteoprotegrin

OsM : Oncostatins M

RA : Renal anemia

RA : Rheumatoid arthritis

RBC : Red blood cell

RES : Reticuloendothelial system

RGM : Repulsive Guidance Molecule

rHuEPO : Recombinant human erythropoietin

RIA : Radioimmunoassay

SELDI-TOF MS: Surface-enhanced laserdesorption/ionization time- of-

flight mass spectrometry

SCD : Sickle cell disease

SQUID : Superconducting quantum-interference device

TI : Thalassemia intermedia

TM : Thalassemia major

TMPRSS6 : Transmembrane serine protease- 6

TNF : Tumour necrosis factor

TR : Transferrin receptor

TS : Transferrin saturation

VHL : Von Hippel–Lindau

LIST OF TABLES

Table	Title	Page
1.	Iron absorption	15
2.	Positive and negative regulators of hepcidin production	30
3.	Proteins involved with hepcidin regulation of iron transport	42
4.	Major categories of liver iron overload	58
5.	Major categories of hereditary hemochromatosis	59
6.	Improvements in Supportive Care of β -Thalassemia	82
7.	Chronic hemolytic anemia types in the study group	89
8.	Comparison between thalssemia major and intermedia as	91
	regard general data	
9.	Comparison between cases and controls as regard general data	92
10.	Comparison between cases and controls as regard laboratory	93
	data	
11.	Comparison between thalassemia major versus intermedia as	97
	regard laboratory data	
12.	Distribution of cases as regard number of blood transfusion	102
13.	Comparison between thalassemia major versus intermedia as	102
	regard number of blood transfusion	
14.	Clinical data (associated findings) concerning cases group	104
15.	Comparison between TM patients and TI patients as regard	105
	associated findings	
16.	Correlation between hepcidin versus general data among	106
	cases	
17.	Correlation between hepcidin(pretransfusion) versus	107

	laboratory data among cases	
18.	Correlation between hepcidin (pretransfusion) versus number	111
	of blood transfusion among cases	
19.	Comparison between hepcidin (pretransfusion) versus type of	112
	chelating agent	
20.	Comparison between males and females as regard hepcidin	112
	among both groups	
21.	Comparison between hepcidin pre and post transfusion	113
22.	Comparison between negative and positive CRP patients as	113
	regard hepcidin pretransfusion	
23.	Validity of hepcidin (pretransfusion) in case of iron overload	115

<u>LIST OF FIGURES</u>

Fig	ure	Title	Page
	1.	Iron uptake and recycling	8
	2.	Main pathways of iron absorption by enterocytes in mammals	9
	3.	Regulation of intestinal iron absorption	11
	4.	Iron homeostasis	12
	5.	Incorporation of iron from plasma transferrin into haemoglobin in	14
		developing red cells	
	6.	Main pathways of iron storage and exportation by hepatocytes in	18
		mammals	
	7.	Effects of inflammation on erythropoiesis and iron homeostasis in	19
		mammals	
	8.	Molecular structure of human synthetic hepcidin-25	26
	9.	The physiological equilibrium of hepcidin	37
	10.	Hepcidin expression	41
	11.	Model of pathways involved in hepcidin regulation	43
	12.	Morbidities related to iron overload in relation to age	68
	13.	Management of Thalassemia and Treatment-Related Complications	81
	14.	Chronic hemolytic anemia types in the control group	89
	15.	Diagram showing sex distribution in cases of control group	90
	16.	Diagram showing sex distribution in cases of study group	90
	17.	Plots of mean and 95% confidence interval serum hepcidin in cases	94
		and control group	
	18.	Mean values of laboratory data of the control group	95
	19.	Mean values of laboratory data of the study group	95

20.	Comparative analysis of Serum Hepcidin, Serum iron and Serum	96
	Ferritin between control and study groups	
21.	Comparative analysis of the laboratory parameters between control	96
	and study groups	
22.	Comparative analysis of Serum Hepcidin, Serum iron and Serum	98
	Ferritin between Thalassemia major and Thalassemia intermedia	
	groups	
23.	Comparative analysis of the laboratory parameters between	98
	Thalassemia major and Thalassemia intermedia groups	
24.	Plots of mean and 95% confidence interval serum hepcidin in	99
	different types of chronic hemolytic anemia	
25.	Plots of mean and 95% confidence interval of serum iron in	99
	different types of chronic hemolytic anemia	
26.	Plots of mean and 95% confidence interval of serum ferritin in	100
	different types of chronic hemolytic anemia	
27.	Mean values of laboratory data of the Thalassemia major group	100
28.	Mean values of laboratory data of the Thalassemia intermedia	101
	group	
29.	Plots of mean and 95% confidence interval of number of blood	103
	transfusion in different types of chronic hemolytic anemia	
30.	Comparison between TM patients and TI patients as regard clinical	105
	features	
31.	Scatter curve represent a significant positive correlation between	106
	age and hepcidin among cases	
32.	Scatter curve represent a significant positive correlation between	108
	AST and hepcidin among cases	

- 33. Scatter curve represent a significant positive correlation between 108ALT and hepcidin among cases
- 34. Scatter curve represent a significant positive correlation between 109 platelets and hepcidin among cases
- 35. Scatter curve represent a significant positive correlation between 110 serum iron and hepcidin among cases
- 36. Scatter curve represent a significant positive correlation between 110 serum ferritin and hepcidin among cases
- 37. Scatter curve represent a significant positive correlation between 111 number of blood transfusion and hepcidin among cases
- 38. Scatter curve represent a significant positive correlation between 114 CRP and hepcidin among cases

CONTENTS

	Page
Introduction and Aim of the Work	1
Review of Literature	4
Iron physiology	4
Hepcidin hormone	23
Iron overload disorders	56
Management of iron overload disorders	73
Subjects and Methods	83
Results	89
Discussion	116
Summary and Conclusion	133
Recommendations	138
References	139
Arabic Summary	

INTRODUCTION AND AIM OF THE WORK

Thalassemia is the most common genetic disorder in Egypt; it composes a major health problem with an estimated carrier rate of 5.3-9%. Registered cases in large centers in Egypt September 2007 were 9912 cases, and in Cairo University hematology clinic were alone 2597 cases (El-Beshlawy et al., 2007). Patients with thalassemia major requiring regular blood transfusions accumulate iron that is toxic to the heart, liver, and endocrine systems (El-Beshlawy et al., 2008).

Complications secondary to iron overload should essentially be prevented as the treatment is difficult and often lifelong. Endocrinopathies secondary to ironoverload include hypogonadism, hypothyroidism, diabetes mellitus and hypoparathyroidism. Most of these occur towards the end of second decade of life and often require lifelong replacement therapy. Iron related cardiac disorders vary from rhythm disturbances to chronic heart failure. The latter being the chief cause of death in young adults with thalassemia major. They need inotropic and anti-arrhythmic medications (Agarwal, 2009).

Park et al., (2001) discovered Hepcidin, a 25 amino-acid peptide hormone synthesized in the liver, and described it as a key regulator of iron homeostasis. Pigeon et al., (2001) found that the expression of hepcidin mRNA in the mouse liver was increased in setting of iron overload. In 2005, Ganz explained that downstream effect of hepcidin is to inhibit intestinal iron absorption, recycling of iron from the reticuloendothelial system, and mobilization of iron from hepatic stores. On the molecular level, this is achieved by hepcidin binding to, and inducing internalization of the cellular iron exporter ferroportin (Nemeth