EFFECT OF MUSIC AND NOISE ON SOME HORMONES IN ADULT MALE ALBINO RAT

THESIS

SUBMITTED BY Walid Mustafa Said Ahmed Ahmed M.B., B.CH.

For partial fulfillment of Master Degree in Medical Physiology

UNDER SUPERVISION OF

Prof. Dr. Mohamed Zakarya El-Etreby

Professor of Medical Physiology, Faculty of Medicine, Al-Azhar University

Prof. Dr. Ali Mohamed El-Hady

Professor of Medical Physiology, Faculty of Medicine, Al-Azhar University

Prof. Dr. Abd-Elrazek Abd-Elhafez Yousef

Professor of Medical Physiology, Faculty of Medicine, Al-Azhar University

بِسْمِ اللَّهِ الرَّحْمَٰنِ الرَّحِيمِ هَالُمِ اللَّهِ الْمَا عَلَّمْ اَنْ اللَّهَ الْمَا عَلَّمْ الْمَا عَلَّمْ الْمَا عَلَمْ الْمَا عَلَيْمُ الْبَعَ اللَّهِ الْمَكِيمُ صَحَقَ اللَّهِ الْمَطِيمِ

البقرة (٣٢)

ACKNOWLEDGEMENT

First and foremost, thanks to "**ALLAH**" who is the most beneficial and the most merciful. Peace and greeting unto the prophet "**MOHAMED**".

I would like to express my deepest gratitude to Prof. Dr. **MOHAMED ZAKARYA EL-ETREBY,** Professor of Physiology, Faculty of Medicine, Al-Azhar University, for his keen supervision, generous cooperation, great help, continuous support and encouragement to finish this work.

I wish to express my profound gratitude to Prof. Dr. **ALI MOHAMED EL-HADY**, Professor of Physiology, Faculty of Medicine, Al-Azhar University, for the continuous and generous help he offered to carry out this work and valuable instructions throughout this work.

I am honored to express my thanks to Prof. Dr. **ABD-ELHAFEZ YOUSEF**, Professor of physiology, Faculty of Medicine, Al-Azhar University, for his supervision, continuous guidance and spending much effort accomplishing the statistical work of this study.

I am honored to express my thanks to M.r **MOHAMMED SAIED** teacher of music ,for his preparing music used in the experiment.

I am honored to express my thanks to Dr. **MOHAMMED ABO-ELWAFA**, for his preparing noise used in the experiment.

I wish to express my profound gratitude to Dr. EZ-ELDIN KHALIFA, lecture of histology, Faculty of Medicine, Al-Azhar University, for his aiding in histological study and his continuous and generous help, he offered to carry out this work and valuable instructions throughout this work.

I would like to express my gratitude to all members of physiology department, faculty of medicine, Al-Azhar University, for their great help, cooperation and support.

I am particularly and deeply thankful to my family, who suffered a lot with me during the preparation and finishing of this work.

List of contents

Title	Page
List of tables	1
List of figures	3
List of abbreviations	5
INTRODUCTION	6
AIM OF THE WORK	8
REVIEW OF LITERATURE	9
Music	9
• Stress	16
• Noise	20
MATERIALS AND METHODS	25
RESULTS	45
DISCUSSION	84
SUMMARY	103
CONCLUSION AND RECOMMENDATIONS	105
REFERENCES	109
ARABIC SUMMARY	135

List of tables

Table No	. Title	Page
Figures of r	results:	
	nces in plasma ACTH between all studied grou	aps 45
2. Differe	ences in plasma ACTH between Music and other grou	
	nces in plasma ACTH between Noise and other grou	
	nces in plasma ACTH between music then noise group and music group	
	nces in serum Cortisol between all studied grou	ıps 49
	nces in serum Cortisol between Music and oth	her 49
	nces in serum Cortisol between Noise and other grou	ips 50
	nces in serum Cortisol between music then noise group ise then music group	50
9. Differe	nces in serum Testosteron between all studied groups	53

List of tables

Table No.	Title	Page
	11010	1 450

Figures of results:

10. Differences in serum Testosteron between music and other groups	53
11. Differences in serum Testosteron between noise and other groups	54
12. Differences in serum Testosteron between music then noise and noise then music groups	54
13. Differences in plasma Epinephrin between all studied groups	57
14. Differences in plasma Epinephrin between music and other	57
15. Differences in plasma Epinephrin between noise and other groups	58
16. Differences in plasma Epinephrin between music then noise group and noise then music group	58

LIST OF FIGURES

Fig. No.	Title	Page
1	differences in plasma ACTH between all studied groups.	61
2	differences in serum Cortisol between all studied groups.	61
3	differences in serum Testosteron between all studied groups.	62
4	differences in serum Epinephrine between all studied groups.	62
5	differences in plasma ACTH between Music and other groups	63
6	differences in serum Cortisol between Music and other groups.	63
7	differences in serum Testosteron between Music and other groups.	64
8	differences in plasma Epinephrine between Music and other groups.	64
9	differences in plasma ACTH between Noise and other groups.	65
10	differences in serum Cortisol between Noise and other groups	65

11	differences in serum Testosteron between Noise and other groups.	66
12	differences in plasma Epinephrine between Noise and other groups.	66
13	differences in plasma ACTH between music then noise group and noise then music group.	67
14	differences in serum Cortisol between music then noise group and noise then music group	67
15	differences in serum Testosteron between music then noise group and noise then music group.	68
16	differences in plasma Epinephrine between music then noise group and noise then music group.	68

LIST OF ABBREVIATIONS

ACTH	adrenocorticotropic hormone
SAM	Sympatho-adrenomedullary system
CRF	Corticotrophin releasing factor.
HPA	Hypothalamic-pituitary-adrenal.
NGF	Nerve growth factor
BDNF	Brain derived neurotropic factor

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION

Music has been a part of human society at least for the past 40,000 years and most likely much longer where, people typically interact with music and value it for its capacity to evoke and regulate emotions, provide enjoyment, comfort, relieve stress, alter mood and elicit relaxation responses (Magill-Levreault, 1993; Juslin and Laukka, 2005).

Such music-induced emotions are often accompanied by physiological reactions, such as changes in heart rate, respiration, skin temperature, conductance and hormone secretion e.g cortisol, oxytocin and B-endorphin (*Lundqvist et al.*, 2009).

People generally use music in different ways depending on the time, mood and environment. For instance, some people use music as a stimulant, others as a tranquilliser, some for intensity and feeling, others as an alternative therapy, some for gaining understanding of their world, while others enjoy its pure abstraction qualities (*Jourdain*, 1997).

☐ Introduction

Music stimuli have biological effects on human behavior by engaging specific brain functions involved in memory, learning and multiple motivational and emotional states (*Thaut*, 1990).

On contrast, Stress can be defined as the psychophysiologic reaction of the organism to a variety of emotional or physical stimuli that threaten homeostasis (*Forsythe, 2004*).

Noise stress is implicated in various illness of human and it is responsible for increased morbidity associated with modern life style (*Mahmood et al., 2007*).

Noise is an environmental pollutant capable of causing hearing impairment and widespread disturbances at several levels in human organs and apparatus due to chemical and physiological modifications of endocrine, cardiovascular and nervous systems (*Gloag, 1980 ; Alario et al.,1987*).

There are several non-auditory physiological effects of noise exposure including; hypertension, ischemic heart disease, annoyance, disturbed serum lipids, platelet count, plasma viscosity, glucose and reduced motor efficiency (*Babisch*, 1998; *Babisch*, 2000; *Elise et al.*, 2002; *Theebe*, 2004).

Aim of the work

It was hypothesised that listening to light music from preselected designer music collections may be alleviate the disturbance of homeostasis produced by noise. So the aim of this study is to explore the effect of music and noise on some hormones of suprarenal gland and its histological structural changes.

REVIEW OF LITERATURE