

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DESIGN AND PRODUCTION ENGINEERING DEPARTMENT

DIAGNOSIS OF COMMON MECHANICAL FAULTS IN ROTATING MACHINERY

BY

Eng. Mohammed Mohammed Taha Hedaya B.Sc. Mechanical Engineering (2005)

A THESIS

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science

IN

Mechanical Engineering

Supervised by

Prof. Dr. Mohamed Abdel Salam Aly

Design & Production Engineering Department, Faculty of Engineering, Ain Shams University.

Dr. Mostafa Rostom Ahmed Atia

Design & Production Engineering Department, Faculty of Engineering, Ain Shams University.

Cairo, Egypt (2009)

EXAMINERS COMMITTEE

Examiner	<u>Signature</u>
Prof. Dr. Sabet R. Ghabrial	
Professor in Design & Production Engineering Department.	•••••
Ain Shams University, Faculty of Engineering	
Prof. Dr. Mohamed Kamal Mohamed Bedawy	
Professor in Mechanical Design & Production Engineering Department.	•••••
Cairo University, Faculty of Engineering	
Prof. Dr. Mohamed Abdel Salam Aly	
Professor in Design & Production Engineering Department.	•••••
Ain Shams University, Faculty of Engineering	

STATEMENT

This thesis is submitted to Faculty of Engineering, Ain Shams University for the

degree of M.Sc. in Mechanical Engineering (Design and Production

Engineering).

The work included in this thesis was carried out by the author in

Department of Design and Production Engineering, Faculty of Engineering, Ain

Shams University, Cairo, in the period (2006 to 2009).

No part of the thesis has been submitted for a degree or qualification at

any other University or Institute.

Date

: April., 2009

Signature:

Name

: Mohammed Mohammed Taha Hedaya

C.V.

Name : Mohammed Mohammed Taha Hedaya

Date of Birth : 30 March 1984.

Present Position : Teaching Assistant, Design and Production Engineering

Department, Faculty of Engineering, Ain Shams

University, Cairo, Egypt.

Education : B.Sc., Mechanical Engineering (Production), Faculty of

Engineering, Ain Shams University, 2005.

Education grade : Distinction

Project grade : Distinction

ABSTRACT

Hedaya, Mohammed M. T., "Diagnosis of common mechanical faults in rotating machinery", Unpublished Master of Science Thesis, Ain Shams University, 2009.

Four types of mechanical faults in rotating machinery are considered, namely: misalignment faults (parallel and angular), unbalance faults (static, couple and dynamic), localized gear fault and localized ball bearing faults (in outer race and in inner race). Theoretical study for the nature and frequency of the vibration resulting from each of these faults is presented. The faults were artificially created in special test rig constructed for this purpose. The rig was used to study the nature and frequency of the vibration resulting from each fault experimentally. The natural frequencies of the rig were determined by the finite element method to avoid rig operation near a resonance frequency. Experiments were carried out at different loads. A data acquisition system and a signal analyzer were used to save and analyze the vibration signals measured by accelerometers. For advanced processing of data, such as amplitude demodulation and determination of the envelope spectrum, computer programs were developed. The vibrations were measured at the seat of the bearing which was highly affected by the fault under consideration. In the cases of unbalance faults, vibrations were measured at the bearings carrying the unbalanced rotor simultaneously, to determine the phase angle between these vibrations, which distinguishes different types of unbalance (static, couple and dynamic). The coupling between the vibrations of these bearings was considered. Results showed the following: (1) Misalignment faults cause periodic vibration including the rotational frequency of the coupled shafts and its multiples. (2) Unbalance faults produce harmonic vibrations with a frequency equal to the rotational frequency of the unbalanced rotor. (3) Localized gear fault produces impact vibration repeated at the rotational frequency of the faulty gear. (4) Localized fault in a ball bearing produces impact vibration repeated at the fault frequency of the faulty race (inner or outer).

Keywords: Fault diagnosis, Vibration, Misalignment fault, Unbalance fault, Gear fault, Ball bearing fault.

ACKNOWLEDGEMENT

Praise be to God, Lord of the worlds, by his grace this work has been completed.

The author wishes to express his great gratitude to his supervisors, Prof. Dr. Mohamed Abdel Salam and Dr. Mostafa Rostom, for their invaluable guidance and encouragement throughout the course of this study. He also wishes to express his special gratitude to Prof. Dr. Mohamed Alaa ELdin Elhakim for his invaluable advices. Also, the author wishes to thank all staff of the Machining Laboratory of the Faculty of Engineering for their help in producing the test rig and carrying out the experimental work.

CONTENTS

List of I	Figures.		vii
List of T	Tables		xii
List of S	Symbols		xiii
Chapter	· (1) Int	roduction	3
1.1	Object	tive of the Present Work	3
1.2	Litera	ture Survey	4
	1.2.1	Misalignment Faults	5
	1.2.2	Unbalance Faults	6
	1.2.3	Gear Faults	6
	1.2.4	Ball Bearing Faults	7
1.3	Thesis	Layout	7
Chapter	· (2) The	eoretical Background	11
2.1	Misali	ignment Faults	11
2.2	Unbal	ance Faults	13
	2.2.1	Static unbalance	13
	2.2.2	Couple unbalance	14
	2.2.3	Dynamic unbalance	15
2.3	Gear I	Fault	17
2.4	Ball B	Pearing Faults	18
	2.4.1	Determination of the Speeds of Bearing Elements	18
	2.4.2	Determination of the Fault Frequencies	20
		2.4.2.1 Ball Fault Frequency	20
		2.4.2.2 Cage Fault Frequency	21
		2.4.2.3 Inner Race Fault Frequency	21
		2.4.2.4 Outer Race Fault Frequency	22
2.5	Coupl	ing among the Measurement Points	22
Chapter	· (3) The	e Test Rig	27
3.1	Requi	rements of the Rig	27

3.2	Rig Co	nfiguration	28
3.3	Rig De	sign	28
	3.3.1	Drive Unit	28
	3.3.2	Misalignment Arrangement	30
	3.3.3	Coupling	31
	3.3.4	Shafts	32
	3.3.5	Bearings	32
	3.3.6	Vibration Measurement Blocks	33
	3.3.7	Discs	34
	3.3.8	Motion Transmission by V-Belts	34
	3.3.9	Gears	35
	3.3.10	Loading Unit	36
	3.3.11	Rig Base	38
	3.3.12	Wooden Table	39
3.4	Estima	tion of the Natural Frequencies of the Rig	39
	3.4.1	Development of the Dynamic Model	39
	3.4.2	Use of the Finite Element Package	43
		3.4.2.1 Definition of the Dynamic Model	44
		3.4.2.2 Finite Element Meshing	45
		3.4.2.3 Determination of the Natural Frequencies and	
		Mode Shapes	48
Chapter	(4) Exp	erimental Work	53
4.1	Measu	rement Devices	53
	4.1.1	Angular Position Measurement Devices	53
	4.1.2	Load Measurement Device	55
	4.1.3	Vibration Measurement Device	56
		4.1.3.1 Accelerometers	56
		4.1.3.2 Data Acquisition System	58
4.2	Experi	mental Determination of the Fundamental Natural	
	Freque	ncy of the Rig	59

4.3	3 Measu	rement of Vibrations Produced by Different Faults
	4.3.1	Misalignment faults
		4.3.1.1 Introduction of Misalignment Faults
		4.3.1.2 Vibration Measurements for Misalignment
		Cases
	4.3.2	Unbalance Faults
		4.3.2.1 Introduction of Unbalance Faults
		4.3.2.2 Vibration Measurements for Unbalance Faults
	4.3.3	Gear Fault
		4.3.3.1 Introduction of Gear Fault
		4.3.3.2 Vibration Measurements for Gear Fault
	4.3.4	Bearing Faults
		4.3.4.1 Introduction of Bearing Faults
		4.3.4.2 Vibration Measurements for bearing faults
Chapte	r (5) Res	sults and Discussion
5.1	! Misali	ignment Faults
	5.1.1	Parallel Misalignment Cases
	5.1.2	Angular Misalignment Case
5.2	2 Unbal	ance Faults
	5.2.1	Static Unbalance Cases
	5.2.2	Couple Unbalance Cases
	5.2.3	Dynamic Unbalance Cases
	5.2.4	Coupling Between Bearings B1 and B2
5.3	Gear I	Fault
5.4	4 Bearin	ng Faults
	5.4.1	Cases of Outer Race Fault
	5.4.2	Case of Inner Race
Chapte	r (6) Coi	nclusions
Referen	ıces	

LIST OF FIGURES

Chapter (2) The	coretical Background	
Figure 2-1	Four-jaw coupling	11
Figure 2-2	The driving Flange	12
Figure 2-3	Static Unbalance	14
Figure 2-4	Couple Unbalance	15
Figure 2-5	Dynamic Unbalance	16
Figure 2-6	Section in the bearing	19
Chapter (3) The	e Test Rig	
Figure 3-1	Rig Configuration	29
Figure 3-2	A photo of the rig	30
Figure 3-3	Misalignment arrangement	31
Figure 3-4	Coupling	32
Figure 3-5	Shafts	32
Figure 3-6	A bearing fixed in its seat	33
Figure 3-7	Vibration measurement block	34
Figure 3-8	Discs D1 and D2	35
Figure 3-9	Fixation of a disc on a shaft	36
Figure 3-10	Electric circuit of the loading unit	37
Figure 3-11	Rig base	38
Figure 3-12	The dynamic model	41
Figure 3-13	Shaft S1 and the masses connected to it	42
Figure 3-14	Shaft S2 and the masses connected to it	42
Figure 3-15	Shaft S3 and the masses connected to it	43
Figure 3-16	A 3-D CAD drawing for the model components	45
Figure 3-17	The finite element meshing	47
Figure 3-18	First mode shape	48
Figure 3-19	Second mode shape	49
Figure 3-20	Third mode shape	49

Chapter (4) Exp	perimental Work	
Figure 4-1	Position measurement device	54
Figure 4-2	Photoelectric sensor	55
Figure 4-3	Circuits of the transmitter and receiver 5	55
Figure 4-4	Accelerometer-type 4370 with amplifier-type 2646 5	57
Figure 4-5	B&K accelerometer-type 4514 5	58
Figure 4-6	PULSE Multi-analyzer System 3560 C 5	58
Figure 4-7	Amplitude of acceleration at bearing B15	59
Figure 4-8	Frequency response curve of vibration at bearing	
	B16	50
Figure 4-9	Amplitude of acceleration at bearing B46	60
Figure 4-10	Frequency response curve of vibration at bearing	
	<i>B4</i> 6	61
Figure 4-11	Misalignment measurement arrangement 6	53
Figure 4-12	Vibration measurement setup in misalignment cases 6	64
Figure 4-13	Positions of the holes of discs D1 and D2	55
Figure 4-14	Vibration measurement setup for unbalanced cases 6	66
Figure 4-15	Position of faulty outer race of bearing B2 in its seat 6	68
Chapter (5) Res	sults and Discussion	
Figure 5-1	Order spectra of vibrations at bearing B1 in the	
	horizontal radial direction for load case	73
Figure 5-2	Order spectra of vibrations at bearing B1 in the	
	horizontal radial direction for load case 2	73
Figure 5-3	Order spectra of vibrations at bearing B1 in the	
	horizontal radial direction for load case 3	74
Figure 5-4	Order spectra of vibrations at bearing B1 in the axial	
	direction for load case 1	74
Figure 5-5	Order spectra of vibrations at bearing B1 in the axial	
	direction for load case 27	75

Figure 5-6	Order spectra of vibrations at bearing B1 in the axial
	direction for load case 3
Figure 5-7	Order spectrum of vibration at bearing B1 in the
	horizontal radial direction for the angular
	misalignment case
Figure 5-8	Order spectrum of vibration at bearing B1 in the axial
	direction for the angular misalignment case
Figure 5-9	Frequency spectra of vibrations at bearing B1 for
	cases 1 to 4
Figure 5-10	Frequency spectra of vibrations at bearing B2 for
	cases 1 to 4
Figure 5-11	Phase between vibrations at bearings B1 and B2 for
	case 1
Figure 5-12	Phase between vibrations at bearings B1 and B2 for
	case 2
Figure 5-13	Phase between vibrations at bearings B1 and B2 for
	case 3
Figure 5-14	Phase between vibrations at bearings B1 and B2 for
	case 4
Figure 5-15	Frequency spectra of vibrations at bearing B1 for
	cases 5 to 8
Figure 5-16	Frequency spectra of vibrations at bearing B2 for
	cases 5 to 8
Figure 5-17	Phase between vibrations at bearings B1 and B2 for
	case 5
Figure 5-18	Phase between vibrations at bearings B1 and B2 for
	case 6
Figure 5-19	Phase between vibrations at bearings B1 and B2 for
	case 7

Figure 5-20	Phase between vibrations at bearings B1 and B2 for case 8	8.
Figure 5-21	Frequency spectra of vibrations at bearing B1 for cases 9 to 12	8.
Figure 5-22	Frequency spectra of vibrations at bearing B2 for cases 9 to 12	80
Figure 5-23	Phase between vibrations at bearings B1 and B2 for case 9	80
Figure 5-24	Phase between vibrations at bearings B1 and B2 for case 10	8:
Figure 5-25	Phase between vibrations at bearings B1 and B2 for case 11	8
Figure 5-26	Phase between vibrations at bearings B1 and B2 for case 12	8:
Figure 5-27	Variation of acceleration amplitude for cases 1 to 4	8
Figure 5-28	Variation of acceleration amplitude for cases 5 to 8	89
Figure 5-29	Variation of acceleration amplitude for cases 9 to 12	8
Figure 5-30	Acceleration at bearing B4 for the healthy gear	9.
Figure 5-31	Acceleration at bearing B4 for the faulty gear	94
Figure 5-32	PSD of acceleration for the faulty case of Figure 3-31.	9.
Figure 5-33	Demodulated acceleration for the healthy gear at load case 1	9.
Figure 5-34	Demodulated acceleration for the healthy gear at load case 2	9.
Figure 5-35	Demodulated acceleration for the healthy gear at load case 3	90
Figure 5-36	Demodulated acceleration for the healthy gear at load case 4	90
Figure 5-37	Demodulated acceleration for the faulty gear at load case 1	90

Figure 5-38	Demodulated acceleration for the faulty gear at load
	case 2
Figure 5-39	Demodulated acceleration for the faulty gear at load
	case 3
Figure 5-40	Demodulated acceleration for the faulty gear at load
	case 4
Figure 5-41	Vibration acceleration of the healthy case
Figure 5-42	Vibration acceleration of a faulty case with 0.95mm
	hole in the outer race
Figure 5-43	Frequency spectrum of the acceleration of the healthy
	case
Figure 5-44	Frequency spectrum of the acceleration of a faulty
	case with 0.95mm hole in the outer race
Figure 5-45	Demodulated acceleration of the healthy case
Figure 5-46	Envelope spectrum of the healthy case
Figure 5-47	Envelope spectrum of a faulty case with 0.95 mm hole
	in the outer race
Figure 5-48	Envelope spectrum of a faulty case with 1.8 mm hole
	in the outer race
Figure 5-49	Envelope spectrum of a faulty case with 3 mm hole in
	the outer race
Figure 5-50	Frequency spectrum of the faulty case of the inner
	race