تقييم تعدد أشكال مستقبلات النوع الثانى للانجيوتنسن وعلاقتها بشدة أمراض الشرايين التاجية

رسالة

توطئة للحصول على درجة الهاجستير في الكيمياء الحيوية الطبية و البيولوچيا الجزيئية

مقدمة من

الطبيبة/ سهام عادل بدوى

بكالوريوس الطب والجراحة تحت إشر اف

الأستاذ الدكتور/ هانى يوسف حليم

أستاذ الكيمياء الحيوية الطبية والبيولوچيا الجزيئية كلية الطب - جامعة عين شمس

الدكتورة/ منال لويس لوقا

مدرس الكيمياء الحيوية الطبية والبيولوچيا الجزيئية كلية الطب - جامعة عين شمس

الدكتور/ وائل محمود الكيلاني

أستاذ مساعد أمراض القلب كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٣

Evaluation of Angiotensin II receptor type 2 Polymorphism and its relation to the severity of Coronary Artery Diseases

Thesis

Submitted for Partial Fulfillment of Master Degree In Medical Biochemistry and Molecular Biology

By

Seham Adel Badawy

M.B.B.Ch. Faculty of Medicine Ain Shams University

Under Supervision of **Prof. Hany Youssef Halim**

Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine – Ain Shams University

Dr. Manal Louis Louka

Lecturer of Medical Biochemistry and Molecular Biology Faculty of Medicine – Ain Shams University

Dr. Wael Mahmoud EL Kilany

Assistant Professor of Cardiology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2013

List of Tables

Table No.	Title	Page No.
1	Advantages and disadvantages of PCR-RFLP1	49
2	Reagents of Total cholesterol kit	58
3	Reagents of Triglycerides kit	60
4	Reagents of HDL-C kit	62
5	Reagents of LDL-C kit	64
6	PCR reaction composition	73
7	Reaction conditions of (RFLP) analysis	78
8	The age of patients among the studied groups	80
9	Mean±SD of the Lipid profile of myocardial infarction patients versus the control group	81
10	The different risk factors for acute myocardial infarction among the studied groups	84
11	Distribution and statistical analysis of the correlation of the genotypes of angiotensin II AT2 receptors in patients with acute myocardial infarction and controls	89
12	Coronary risk factors in patients with myocardial infarction stratified according to the genotypes of angiotensin II AT2 receptors	92
13	Coronary risk factors in control group stratified according to the genotypes of angiotensin II AT2 receptors	93
14	Effect of hypertension on A1675G olymorphism as a risk for CAD	94
15	Severity of CAD among AMI patients	95

16	Statistical analysis of the severity of coronary	
	artery disease according to the genotypes of the	
	angiotensin II AT2 receptors in the AMI	
	patients	96

List of Figures

Fig.	Title	Page No.
1	Pathophysiologic events culminating in the acute coronary syndrome	17
2	Mechanism of platelet activation and aggregation	19
3	The classical renin-angiotensin system	25
4	Mode of action of AngII receptor	30
5	Small-scale genetic variation includes SNPs, DNPs and TNPs.	46
6	DNA gel electrophoresis for AT2R in myocardial infarction patients.	85
7	DNA gel electrophoresis for AT2R in control group.	86
8	Products of enzymatic restriction of the AT2R gene with the HPY188III enzyme in AMI patients.	87
9	Products of enzymatic restriction of the AT2R gene with the HPY188III enzyme in control group.	88

List of Abbreviations

Γ	
ACE	Angiotensin converting enzyme
ACE2	Angiotensin converting enzyme 2
ADP	Adenosine diphosphate
AGT	Angiotensinogen
AMI	Acute myocardial infarction
Ang (1–7)	Angiotensin(1–7)
Ang I	Angiotensin I
Ang II	Angiotensin II
ARB	Angiotensin-receptor blocker
AT1R	Angiotensin II Type one Receptor
AT2R	Angiotensin II Type Two Receptor
B2Rs	Bradykinin 2 receptors
BLAST	Basic Local Alignment Search Tool
CAD	Coronary artery Disease
cGMP	Cyclic guanosine monophosphate
CHD	Coronary heart disease
CHF	Congestive heart failure
CIs	Confidence intervals
CK MB	Creatine Kinase-MB
COX	Cyclooxygenase
CRP	C- reactive protein
dATP	Deoxyadenosine triphosphate
dCTP	Deoxycytidine triphosphate
dGTP	Deoxyguanosinetriphosphate
DHB	Dihydroxy Bergamottin
DNA	Deoxyribonucleic acid

	List of Abbreviations (Cont)		
DNP	Double nucleotide polymorphisms		
Dttp	Deoxythiamin triphosphate		
ECG	Electrocardiography		
EDTA	Ethylene Diamine Tetraacetic acid		
EGFR	Epidermal growth factor receptor		
ERK	Extracellular signal regulated kinases		
GF	Growth Factor		
GPIIb/IIIa	Glycoprotein llb/llla		
HDL	High-density lipoprotein		
ICAM	Intercellular adhesion molecule		
IR	Insulin receptor		
IRS	Insulin receptor substrates		
JAKs	Janus kinases		
KDa	Kilo Dalton		
LBBB	Left bundle branch block		
LDL	Low-density lipoprotein		
LVH	Left ventricular hypertrophiy		
MAP	Mitogen-activated protein		
MCP-1	Monocyte chemoattractant protein-1		
MI	Myocardial Infarction		
MNPs	Multi-nucleotide polymorphisms		
NAD	Nicotinamide adenine dinucleotide		
NAD (P)	Nicotinamide adenine dinucleotide Phosphate		
NO/cGMP	Nitric oxide/cyclic guanosine monophosphate		
Ors	Odds ratios		
PI3K	Phosphatidylinositol-3 kinase		

List of Abbreviations (Cont)		
PKC	Protein kinase C	
PLA	Phospholipase A	
PLD	Phospholipase D	
PRR	Prorenin receptor	
RAS	Renin-angiotensin system	
RFLP	Restriction fragment length polymorphism	
ROS	Reactive oxygen species	
RVLM	Rostral ventrolateral medulla	
SNPs	Single nucleotide polymorphisms	
STEMI	S-T elevation myocardial infarction	
TBE	Tris-borate EDTA	
TG	Triglycerides	
TGF	Tumor Growth Factor	
TNF	Tumor necrosis factor	
TNPs	Triple nucleotide polymorphisms	
URL	Upper Reference Limit	
UTR	Untranslated region	
VLDL	Very low density lipoproteins	

List of Contents

Subject	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the work	3
Review of literature	4
Patients and methods	54
Results	80
Discussion	97
Summary and conclusion	108
Recommendation	112
References	113
Arabic Summary	_

My deepest gratitude & thanks to **ALLAH** the most merciful for guiding me through & giving me the strength to complete this work the way it is.

I would like to express my deepest thanks & profound respect to my honored Professor **Dr. Hany Youssef Halim,** Professor of medical Biochimstry and Molecular Biology. Great thanks for his guidance, support and patience that he gave me throughout the whole work. It has been an honor & privilege to work under his generous supervision.

I find no words by which I can express my deepest thanks & appreciation to **Dr. Manal Louis Louka**, Lecturer of medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, for her great support, valuable time and continuous advices which helped me to overcome many difficulties.

I am also deeply grateful & would like to express my sincere thanks & gratitude to assist. Proff Dr. Wael Mahmoud EL Kilany, assist. Proff of Cardiology, Faculty of Medicine—Ain Shams University for his great help, careful supervision, continuous contributions & great encouragement throughout the whole work.

Seham Adel Badawy

Introduction

Coronary heart disease (CHD) is the single largest killer of men and women in the United States. The total numbers of individuals affected by CHD or by myocardial infarction (MI) in 2003 were 13.2 million and 7.2 million, respectively. Despite recent advances in therapy for these conditions, nearly 480,000 and 170,000 patients die annually from CHD or MI, respectively (*Thom et al.*, 2006).

Myocardial infarction in Egypt is an epidemic of enormous proportions. Contrary to the common belief, that ischemic heart disease is uncommon in developing countries, all evidence indicates that, this very serious condition is just as common in Cairo as it is in New York, Paris and in Moscow. The technology needed to combat MI is abundantly available in Egypt, yet only a minority of victims of this disease receive proper state of art treatment (*Mehta et al.*, 2009).

Coronary artery disease (CAD) is a multifactorial disease influenced by environmental and genetic factors. Family history of premature CAD in addition to other risk factors, such as smoking, obesity, diabetes and dyslipidaemia, are all interactive factors contributing to the occurrence of the disease (*Egred et al.*, 2005).

Introduction

Although the role of these environmental factors in the development of myocardial infarction (MI) has been clearly established, the role of nonconventional risk factors remains undefined. In the last few years, great interest has been focused on genetic factors with the intention of finding common markers that could identify a subgroup of patients at higher risk of death or with a worse prognosis in which new therapeutic timings and interventions could be tested (*Hengstenberg et al.*, 2002).

The renin-angiotensin system comprises a cascade of enzymatic reactions, which results in the production of angiotensin II from the angiotensinogen substrate. The physiological effects of angiotensin II are mediated by a final common pathway, through angiotensin II binding to specific receptors located on the cell membrane (*Timmermans et al.*, 1993; de Gasparo et al., 2000).

Aim of the work

- 1. Study the association between the genetic polymorphism of AT2R gene A1675G and susceptibility to acute myocardial infarction.
- 2. Correlation of the genotypic results to the severity of the coronary artery disease and to the different risk factors.

Myocardial Infarction

Definition:

Defined according to the "Universal Definition of Myocardial Infarction" conducted by *Thygesen et al.* (2007) on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction as:-

- i. Detection of a rise of cardiac biomarkers (preferably troponin) with at least one value above the 99th percentile of the upper reference limit (URL) together with evidence of myocardial ischemia with at least one of the following:
 - 1. Symptoms of ischemia.
 - 2. ECG changes indicative of new ischemia (new ST-T changes or new left bundle branch block [LBBB]).
 - 3. Development of pathological Q waves in the ECG.
 - 4. Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality.
- ii. Sudden, unexpected cardiac death, involving cardiac arrest, often with symptoms suggestive of myocardial ischemia, and accompanied by presumably new ST elevation, or new left bundle branch block (LBBB), and/or evidence of fresh

Review of Literature

thrombus by coronary angiography and/or at autopsy, but death occurring before blood samples could be obtained, or at a time before the appearance of cardiac biomarkers in the blood.

Risk Factors:

1. Non-modifiable risk factors:

i. Older age

Older adults are more likely to die of heart disease. About 80% of heart disease deaths occur in people aged 65 or older.

ii. Gender

Men tend to have heart attacks earlier in life than women. Women's rate of heart attack increases after menopause but does not equal men's rate. Even so, heart disease is the leading cause of death for both men and women (*Braunwald et al.*, 2001).

iii. Heredity/Family history:

Increased risk is noticed if a first degree blood relative has had coronary heart disease or stroke before the age of 55 years for male relative and 65 years for female relatives (*Braunwald et al.*, 2001).