Role of CT Virtual Colonoscopy in Diagnosis of Colo-Rectal Neoplasms

Thesis

Submitted for Partial Fulfillment of the M.D. Degree in Radiodiagnosis

By Eman Ahmed Fouad Darwish

M.B.B.CH.M. Sc. Radiodiagnosis Faculty of Medicine Ain Shams University

Under Supervision of

Prof. Dr. Mohammed Abu-El-Huda Darwish

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Prof. Dr. Hesham Hassan Wagdy

Professor of General Surgery Faculty of Medicine Ain Shams University

Prof. Dr. Sahar Mohamed AlGaafary

Professor of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Faculty of Medicine Ain Shams University 2013

First of all, all gratitude is due to **Allah** for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Mohammed Abu-El-Huda Darwish**, Professor of Radiodiagnosis, Faculty of Medicine-Ain Shams University, for his supervision, continuous help, encouragement throughout this work and great effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I am also grateful to **Prof. Dr. Hesham Hassan Wagdy**, Professor of General Surgery, Faculty of Medicine- Ain Shams University, for his guidance, continuous assistance and sincere supervision of this work.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Sahar Mohamed AlGaafary**, Professor of Radiodiagnosis, Faculty of Medicine- Ain Shams University, for her continuous directions and support throughout the whole work.

Last but not least, I dedicate this work to **my family**, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Eman Ahmed Fouad Darwish

Contents

Title Page	
List of Figures	I
List of Tables	V
List of Abbreviation.	VI
Introduction and Aim of the Work	1
Review of Literature:	
Chapter (1): Anatomy	5
Chapter (2): Pathology	41
Chapter (3): Technique of virtual CT colonoscopy	63
Patients and Methods	93
Results	99
Illustrative Cases	108
Discussion	132
Summary and Conclusion	154
References	159
Arabic Summary	

List of Figures

Figure	Title	Page
Fig. (1)	The structures of the colon	6
Fig. (2)	The cecum and vermiform process, with their	9
	arteries	
Fig. (3)	The relations of the sigmoid colon	16
Fig. (4)	The main branches of the superior and inferior	25
	mesenteric arteries	
Fig. (5)	The main branches of the superior and inferior	26
	mesenteric veins	
Fig. (6)	The lymph vessels and nodes of the colon	28
Fig. (7)	Axial contrast enhanced MSCT images	31
	demonstrating ascending colon in relation to the	
	surrounding structures	
Fig. (8)	Axial contrast enhanced MSCT images	32
	demonstrating hepatic flexure in relation to the	
	surrounding structures	
Fig. (9)	Axial contrast enhanced MSCT images	33
	demonstrating descending colon in relation to the	
	surrounding structures	
Fig. (10)	Axial contrast enhanced MSCT images	34
	demonstrating sigmoid colon in relation to the	
	surrounding structures	
Fig. (11)	Virtual colonoscopy image of the rectum showing	35
	normal Houston's valves	
Fig. (12)	Virtual (A) and conventional (B) colonoscopy	36
	images of the sigmoid colon showing the tortuous	
	bend in sigmoid colon	
Fig. (13)	Virtual (A) and conventional (B) colonoscopy	37
	images of the descending colon, which is recognized	
	as uninterrupted stretch of colon	
Fig. (14)	Virtual (A) and conventional (B) colonoscopy	38
	images of the transverse colon	

Figure	Title	Page
Fig. (15)	Virtual (A) and conventional colonoscopy images	39
	(B) and (C) of the cecum showing circular	
	appendiceal orifice (straight arrow), ileocecal valve	
	(curved arrows) and circumferential rings of	
E' (16)	decreasing diameter	20
Fig. (16)	Three dimensional MSCT colonographic (A) and	39
	endoscopic (B) images depicting a labial type of the	
F: (4.5)	ICV	40
Fig. (17)	Three dimensional MSCT colonographic (A) and	40
	endoscopic (B) images showing a papillary type of	
	the ICV	
Fig. (18)	Endoluminal image of the colon showing the	40
	teniae coli as three faint longitudinal bands	
Fig. (19)	Fecal tagging showing the residual stool in the	67
	ascending and descending colon	
Fig. (20)	Computer generated electronic accented image	68
	showing fecal tagging with orally administered	
	barium.	
Fig. (21)	Coronal reformatted MSCT image lung window	76
	settings shows gas filled and distended loops of	
	small bowel and colon with incompetent ileocecal	
	valve	
Fig. (22)	Display of computer calculated centerline for	79
	automatic fly through navigation	
Fig. (23)	Three dimensional threshold rendered endoluminal	80
	images of the colon showing the haustral folds	
Fig. (24)	Three dimensional volume rendered MSCT	80
	colonographyendoluminal image of normal colon	
Fig. (25)	Schematic shows areas in black that are missed in	81
	conventional 3D view	
Fig. (26)	Tissue transition projection of the whole colon	82
	resembling the barium enema	
Fig. (27)	Panoramic endoscopy display	83

Figure	Title	Page
Fig. (28)	Virtual dissection view of the colon	84
Fig. (29)	Unfolded cube display of the colon	85
Fig. (30)	(A) Three-dimensional volume-rendered	87
	endoluminal image shows polyp on fold (B)	
	Translucency rendering applied to 3D image in A	
	shows typical color pattern of soft-tissue polyp	
Fig. (31)	(A) Three-dimensional endoluminal image shows	88
	22-mm sessile polypoid lesion. (B) Translucency	
	rendering applied to 3D image in A shows	
	completely white interior, indicative of contrast	
	material tagging. (C) Two-dimensional axial	
	image shows dense fecal matter	
Fig. (32)	CT colonographic image of 7-mm tubular	91
	adenoma (short white arrows) in rectum of 62-	
	yearoldman.	
Fig. (33)	Adenocarcinoma of the right colon with extensive	109
a-c	extracolonic extension and malignant	
	retroperitoneal collection	
Fig. (34)	Multiple colonic polypi, the largest pathologically	111
а-е	proven to be an adenoma. Intussception was	
	incidentally discovered by CT.	
Fig. (35)	Malignant rectosigmoid stricture pathologically	114
a-d	proven to be a grade II adenocarcinoma	
Fig. (36)	Rectosigmoid polyp	116
a-c		110
Fig. (37)	Grade II adenocarcinoma of the hepatic flexure and	118
a -f	ascending colon with pathologically proven	
E: - (20)	malignant paraaortic lymphadenopathy.	101
Fig. (38)	Multiple colonic polypi	121
a-e	Multiple colonie nalywi	104
Fig. (39)	Multiple colonic polypi	124
a-f		

Figure	Title	Page
Fig. (40)	Obstructing adenocarcinoma of transverse colon.	127
a-c		
Fig. (41)	Smallcaecal polyp	129
a,b		
Fig. (42)	Adenoma of the rectosigmoid colon	131
a,b		

List of Tables

Table	Title	Page
Tab. (1)	Modified Astler-Coller-Dukes Classification	58
	for Clinical Staging of Colorectal Carcinoma	
Tab. (2)	Sex distribution of patients	94
Tab. (3)	Age distribution of the patients	94
Tab. (4)	Number of Polyps by size at colonoscopy	100
Tab. (5)	Segment Location and Number of cancers	101
Tab. (6)	Overall distribution of cancers	101
Tab. (7)	Polyp Detection Rate at CT Colonography	103
Tab. (8)	Number of cancers accurately staged by	103
	virtual colonoscopy according to the	
	modified Astler-Coller-Dukes system	
Tab. (9)	False positive Polyps related to Poor	104
	preparation and Complex haustral folds at	
	CT Colonography	
Tab. (10)	False Negative Polyps related to Poor	105
	Preparation and Poor Colonic Distention	
Tab. (11)	Diagnoses and number of extracolonic	107
	findings detected by CT	
	colonography	

List of Abbreviations

Abb.	Meaning
2D	Two dimensional
3D	Three dimensional
AJCC	American Joint Commission on Cancer
AJR	American Journal of Roentegenology
CAD	Computer aided diagnosis
CT	Computed tomography
CTC	Computed tomographic colonography
FAP	Familial adenomatous polyposis
Fig.	Figure
GIT	Gastrointestinal tract
ICV	Ileo-caecal valve
IV	Intravenous
KV	Kilovolt
mA	Milliampere
MALT	Mucosal associated lymphoid tissue
mg	Milligram
MIP	Maximum intensity projection
mm	Millimeter
MSCT	Multislice computed tomography
msec	Millisecond
NEJM	New England Journal of Medicine
PJ	PeutzJeghers
RSNA	Radiology Society of North America
Sec.	Second
SSD	Surface shaded display
TNM	Tumor Node Metastasis
VC	Virtual colonoscopy
VR	Volume rendered
WHO	World Health Organization

Introduction

Colorectal carcinoma is among the leading causes of malignancy related deaths in the world. Because of the natural history of the progression from colorectal polyp to carcinoma, with most frank colo-rectal cancers arising from pre-existing polyps, early and prompt diagnosis can have a significant effect on patient mortality (*Silva et al., 2005*). Not only will detection and removal of precursor adenomas result in a decrease in the incidence of colorectal cancer, frank colo-rectal neoplasia has a great potential for cure when detected at an early stage. According to the American cancer society the 5-year survival rate for patients with colorectal cancer is 83%-90% if disease is confined to the bowel wall and less than 10% if there are distant metastases; thus, prompt detection and treatment are critical (*Silva et al., 2006*).

There is a continued search for method of early detection of colorectal neoplasms that is cost-effective, safe, and acceptable to patients. Current methods used to detect colorectal polyps and colonic cancer include sigmoidoscopy, colonoscopy, and double-contrast barium enema examination. The effectiveness of each modality remains controversial, and each method has inherent limitations. For instance, flexible sigmoidoscopy allows examination of only the distal 60 cm of the colon, which limits evaluation to the descending colon,

sigmoid, and rectum; inherently, lesions are missed in subjects who have colonic neoplasms located proximal to the splenic flexure, while evaluations of double-contrast barium enema examination for the detection of colorectal cancer have found sensitivities of 71%–95% sometimes reported being as low as 50%–75% in some studies (*Yee et al.*, 2001).

Though colonoscopy is currently considered reference standard for the detection of colorectal neoplasia it has various potential limitations. First, up to 10% colonoscopic examinations are technically difficult even for experienced colonoscopists. In addition to poor bowel preparation, an experienced colonoscopist may be unable to complete the colonoscopy and intubate the cecal pole for a variety of reasons (redundant colon; colonic spasm; marked diverticulosis; obstructing masses or strictures; and angulation or fixation of colonic loops, most commonly due to previous pelvic surgery). Second, it does not allow evaluation of the liver and other organs outside the colon. Third, it has a blind area, as a colonoscope passes in only one direction. For example, the opposite side of a colonic fold cannot be evaluated exactly. Finally, it is invasive and uncomfortable (*Chung et al.*, 2005).

Therefore, in search for a rapid, less invasive, accurate, and well-tolerated technique which can image the entire colon and reliably identify colonic neoplasms, computed tomographic

(CT) colonography, or "virtual colonoscopy," has evolved quickly. CT colonography refers to a CT examination of the fully prepared and air-distended colon. Volumetric CT data in the entire colon are acquired with only a few seconds to minutes of scanning and with a total of 15 minutes or less of examination time. By combining these data with advanced imaging software, the colon is examined at an off-line workstation by using the combination of two-dimensional (2D) and 3D images (*Johnson and Dachman*, 2000).

Theoretically, potential advantages of CTC include visualisation of colonic anatomy from both an endoluminal perspective as well as in multiple cross-sections, elimination of "blind spots" behind colonic folds as the entire colon is almost always evaluated, the display of the proximal colon that is inaccessible at colonoscopy because of obstructing colonic lesions or because of incomplete endoscopic examinations and the assessment of extracolonic abdominal and pelvic organs which provides radiologists with an opportunity to discover other potentially life-threatening, asymptomatic conditions (*Johnson and Dachman*, 2000).

Aim of the Work

The aim of this study is to assess the role of CT colonography (virtual colonoscopy) as a non-invasive imaging technique in detection and diagnosis of colorectal neoplasia using conventional colonoscopy and/or operative findings as a reference standard, as well as highlighting its advantages and possible pitfalls.

Chapter (1):

Anatomy of the Colon

The large intestine begins at the end of the ileum in the lower right quadrant of the abdomen. From there, it leads superiorly on the right side to a point just below the liver; it then crosses to the left, descends into the pelvis, and terminates at the anus (*Van De Graff*, 2001).

It tends to form a border around the loops of the small intestine which are located centrally within the abdomen (*Borley*, 2005).

The large intestine is structurally divided into the caecum, colon, rectum, and anal canal. (*Fig.1*) Its caliber is greatest near the caecum and gradually diminishes to the level of mid-rectum. It enlarges in the lower third of the rectum to form the rectal ampulla, above the anal canal (*Borley, 2005*).

A specialized portion of the mesesntery, the mesocolon, supports the transverse portion of the large intestine along the posterior abdominal wall (*Van De Graff,2001*).

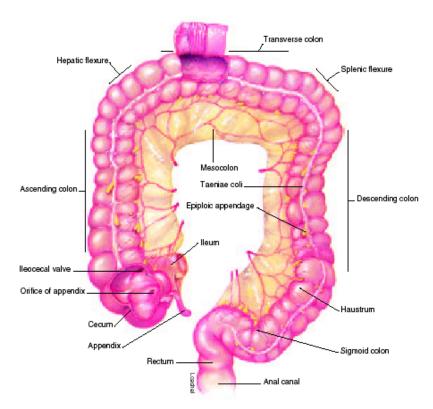


Figure (1): The structures of the colon including the teniae, haustra and appendices epiploicae (Quoted from Van De Graaff, 2001).

The large intestine differs from the small intestine in the following ways: It has a greater caliber. Its longitudinal muscle, though a complete layer, is concentrated into three longitudinal bands, taeniae coli, in all but the distal sigmoid colon and rectum. Small adipose projections, appendices epiploicae are sattered over the free surface of the whole colon, but they tend to be absent from the caecum, vermiform appendix and the rectum. Moreover, the colonic wall is puckered into sacculations (haustrations) which may, in part, be due to the presence of