Effectiveness of 2nd Course of Oral Ibuprofen in Closure of Patent Ductus Arteriosus After Failure of Initial Treatment in Preterm Infants

Thesis

Submitted for fulfillment of the M.Sc. degree in Pediatrics

By

Ahmed Ibrahim Amin

Resident of Pediatrics
The national institute of health insurance

Under supervision of

Prof. Dr. Zahraa Mohammed Ezzeldin

Professor of Pediatrics, Head of NICU unit, Faculty of Medicine, Cairo University

Prof. Dr. Amira Esmat Al-Tantawy

Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University

Dr. Hanan Zekri Khaled

Lecturer of Pediatrics, Faculty of Medicine, Cairo University

أعوذ بالله من الشيطان الرجيم بسم الله الرحمن الرحيم

" قَالُوا سُبْحَانَكَ لا عِلْمَ لَنَا إلاَّ مَا عَلَّمْتَنَا الْأَ مَا عَلَّمْتَنَا إلاَّ مَا عَلَّمْتَنَا إلاَّ مَا عَلَّمْتَنَا إلاَّ مَا عَلَّمْتَنَا إلْكَا أَنتَ العَلِيمُ الحَكِيمُ "

صدق الله العظيم

" سورة البقرة أية (٣٢) "

ACKNOWLEDGEMENT

First of all, I would like to thank *ALLAH*, the merciful and compassionate for making all this work possible and for granting me the best teachers, family, colleagues that many people would wish and dream to have.

I am honored to have Prof. Dr. Zahraa Mohammed Ezzeldin, professor of pediatrics and neonatology, Faculty of Medicine, Cairo University as a supervisor on this work. I am greatly indebted to her for her valuable supervision and kind guidance.

Also I would like to thank Prof. Dr. Amira Esmat Al-Tantawy, assistant professor of pediatrics, Faculty of Medicine, Cairo University, for her patience, guidance and her helpful advice throughout my research work. I will never forget her great effort with me.

Words cannot express my deep gratitude and sincere appreciations to Dr. Hanan Zekri Khaled, lecturer of pediatrics, Faculty of Medicine, Cairo University, who assisted me in the most of the practical work. I would like to express all the feelings of respect and appreciation toward her. I am extremely fortunate to work under her supervision.

The completion of this work wouldn't be possible without the help support and encouragement of my Parents, brother Mohammed and sister Asmaa.

I would like to send special thanks to my dear wife for her great patience, support and help.

To all those I say:

جزاكم الله خيرا ووفقكم لما يحبه ويرضاه

TABLE OF CONTENTS

P	A	G	F
	AM	•	A.

ABBREVIATIONS	V
LIST OF FIGURES	Vi
LIST OF TABLES	Vii
ABSTRACT	Viii
INTRODUCTION	1
AIM OF WORK	4
REVIEW	5
• Anatomy	6
Embryology	8
Histological Overview	10
Fetal Circulation	11
Pathophysiology & Hemodynamics	23
Clinical Features	34
Prognosis and Complications	37
Diagnosis	44
Prevention	56
Treatment	57
METHODS	76
RESULTS	81
DISCUSSION	100
SUMMARY	111
RECOMMENDATIONS	115
MASTER TABLES	116
REFERENCES	133
ARABIC SUMMARY	146

ABBREVIATIONS

ALT Alanine Transferase ASD Atrial Septal Defect AST Aspartate Transaminase	
BPD Bronchopulmonary Dysplasia	
BUN Blood urea nitrogen	
CHF Congestive Heart Failure	
CLD Chronic Lung Disease	
COA Coarcitation of Aorta	
<u> </u>	
10	
GA Gestation age	
GFR Glumerular Filtration Rate	
IVC Inferior Vena Cava	
IVH Intra-Ventricular Heamorage	
LVH Left Ventricular Hypertrophy	
MRI Magnetic Resonance Imaging	
NEC Necrotizing Enterocolitis	
NICU Neonatal Intensive Care Unit	
NO Nitric Oxide	
NSAID Non-Steroidal Anti-inflammatory Drugs	
PA02 Pressure Of Arterial Oxygen	
PDA Patent Ductus Arteriosus	
PEEP Peak-End-Expiratory-Pressure	
PGS Prostaglandins	
PIP Positive Inspiratory Pressure	
PLT Platelets	
PVOD Pulmonary Vascular Obstructive Disease	
PVR Pulmonary Vascular Resistance	
RDS Respiratory Distress Syndrome	
RVH Right Ventricular Hypertrophy	
S1 1 st Heart Sound	
S2 2 nd Heart Sound	
SIMV Synchronized Intermittent Mandatory Ventilation	
SVC Superior Vena Cava	
TLC Total leukocytic Count	
UOP Urine Output	
VSD Ventricular Septal Defect	

LIST OF FIGURES

FIGURES	TITLE	PAGE
Fig. 1	Anatomy Of PDA	6
Fig. 2	Embryology of Aortic arch system	8
Fig. 3	Fetal Circulation	11
Fig. 4	Transition from fetal to neonatal circulation	10
Fig. 5	ECG of left ventricular hypertrophy	46
Fig. 6	Bi-ventricular Hypertrophy	48
Fig. 7	Right ventricular hypertrophy	٤٨
Fig. 8	Chemical structure of Ibuprofen	66
Fig. 9	Ratio of males to females in study group	83
Fig. 10	Effectiveness of 1 st course of oral ibuprofen	٨٤
Fig. 11	Effectiveness of 2 nd course of oral ibuprofen	٨٤
Fig. 12	Total Cumulative closure rate of the two	٨٥
Fig. 12	ibuprofen courses	
Fig. 13,14	Ventilatory support pre and post 1 st course	٨٦
Fig. 15	Changes in PIP after 1 st course	۸٧
Fig. 16	Changes in FiO2 after 1 st course	۸٧
Fig. 17,18	Ventilatory support pre and post 2 nd course	88
Fig. 19	Changes in PIP after 2 nd course	٨٩
Fig. 20	Changes in FiO2 after 2 nd course	٨٩
Fig. 21,22	Effect of Ibuprofen on urine output	٩.
Fig. 23,24	Effect of oral Ibuprofen on BUN	9 4
Fig. 25,26	Effect of oral Ibuprofen on serum Creatinine	۹ ۳
Fig. 27,28	Effect of oral Ibuprofen on Platelet count	٩ ٤
Fig. 29	Changes in hemoglobin levels after 1 st course	90
Fig. 30	Changes in hemoglobin levels after 2 nd course	٩ ٦
Fig. 31,32	Effect of oral Ibuprofen on liver enzymes	٩٧
Fig. 33	Effect of 2 nd course of ibuprofen on serum bilirubin.	٩ ٨
Fig. 34	Mortality within 2 weeks of post natal age.	١

LIST OF TABLES

TABLES	TITLE	PAGE
Table 1	Optimal timing of pharmacologic treatment for PDA	٦.
Table 2	Dosage schedule for Indomethacin in premature infants with patent ductus arteriosus	63
Table 3	Mean age and weight in study group	۸۳
Table 4	sex of involved cases	84
Table 5	Ventilatory support pre and post 1 st course	٨٦
Table 6	Comparing pre-treatment with post 1st course PIP using paired t-test	۸٧
Table 7	Comparing pre-treatment with post 1 st course FiO2 using paired t-test	۸٧
Table 8	Ventilatory support pre and post 2 nd course	۸۸
Table 9	Comparing pre 2 nd with post 2 nd course PIP using paired t-test	٨٩
Table 10	Comparing pre 2 nd with post 2 nd course FiO2 using paired t-test	٩.
Table 11	Influence of duct closure on outcome of mechanical ventilation	٩.
Table 12	Comparing pre-treatment with post 1st course UOP using paired t-test	۹ ۱
Table 13	Comparing post 2 nd with pre 2 nd UOP course using paired t-test	۹١
Table 14	Comparing pre-treatment with post 1st course BUN using paired t-test	٩ ٢
Table 15	Comparing post 2 nd with pre 2 nd course BUN using paired t-test	٩ ٢
Table 16	Comparing pre-treatment with post 1st course creat, using paired t-test	۹ ۳
Table 17	Comparing post 2 nd with pre 2 nd course creatinine using paired t-test	٩٣
Table 18	Comparing pre-treatment with post 1 st course PLT using paired t-test	٩ ٤
Table 19	Comparing post 2 nd with pre 2 nd course PLT using paired t-test	9 £
Table 20	Normal decline in serum hemoglobin post natal	90
Table 21	Comparing pre-treatment with post 1st course Hb% using paired t-test	90
Table 22	Comparing post 2 nd with pre 2 nd course Hb% using paired t-test	97
Table 23	Comparing pre-treatment with post 1st course ALT using paired t-test	٩٧
Table 24	Comparing post 2 nd with pre 2 nd course ALT using paired t-test	٩٧
Table 25	Comparing pre 2 nd with post 2 nd course bilirubin using paired t-test	٩ ٨
Table 26	Mortality and cause of death within two weeks of life	١
Table 27	Relation of 2 weeks mortality with ibuprofen courses	١
Table 28	Master table-Clinical data	١٢.
Table 29	Master table-Laboratory data	١٢٤
Table 30	Master table-Ventilatory settings	١٢٦
Table 31	Master table-Echocardiography findings	١٢٨
Table 32	Master table-Closure rate after 1 st course of ibuprofen	١٣٠
Table 33	Master table-Closure rate after 2 nd course of ibuprofen	١٣١
Table 34	Master table-Mortality	132

MBSTRACT

Key words:

Patent ductus arteriosus- PDA - oral ibuprofen- - Preterm- second course.

The objective of this study was to determine the efficacy and safety of 2nd course of oral ibuprofen in closure of hemodynamically significant PDA in preterm infants after failure of the initial course. The study included 100 preterm neonates \leq 34 weeks gestational age admitted to Kasr Al-Ainy hospital, NICU units, Cairo University between Jan. and Sept. 2009 whom had clinically significant PDA, they received initial oral ibuprofen course of 10, 5, 5 mg/kg/dose at 24h intervals. Seventy six neonates had their PDA closed after 1st course with closure rate of 76%, nineteen neonates were eligible to receive 2nd course of 20, 10, 10 mg/kg/dose at 24hr intervals. Nine of total 19 infants had their PDA closed with closure rate of 47.46%. Monitoring of urine output, renal function, hematological parameters, gastrointestinal symptoms, neurological and hepatic function showed no significant adverse effects related to treatment.

Conclusion: 2nd course of ibuprofen is safe and effective in closure of PDA in preterm infants with cumulative closure rate of 89.4%.

INTRODUCTION

Patent ductus arteriosus (PDA) is a postnatal communication, usually between the main pulmonary trunk and the descending thoracic aorta that's due to the persistent patency of fetal ductus arteriosus (David et al., 2006).

The incidence of isolated persistent patency of ductus arteriosus has been estimated to be 1:2000 to 1:5000 births or about 10-12% of all varieties of congenital heart disease (Friedman & Silverman, 2001). The persistence of the PDA in preterm infants is inversely related to gestational age and birth weight. The incidence of PDA is 70% in preterm infants weighing less than 1000 g and 29 weeks gestational age. Although spontaneous closure of the ductus will occur in approximately 34% of these extremely low-birth-weight (ELBW) infants, failure of the ductus to close in remaining infants can result in potentially life-threatening sequelae (Sekar & Corf, 2008).

The clinical consequences of PDA are related to the magnitude of the left-to-right shunt through the PDA with its associated change in blood flow to the lung, kidneys, and intestine (Clyman, 2005).

The typical presentation of PDA begins with harsh systolic ejection murmur heard over the entire pericardium but loudest at the left upper sternal border and left infraclavicular area. The peripheral pulse increases in amplitude (bounding pulses). The respiratory status of the patient deteriorates leading to tachypnea, apnea, CO2 retention and increased need to mechanical ventilation (Wechsler and Wernovskey, 2004).

In some centers, conservative measures including fluid restriction, diuretics, and Digoxin have been advocated to treat the symptoms associated with a PDA. Although

excessive fluid administration has been associated with an increased incidence of PDA, fluid restriction is unlikely to cause ductus closure. In addition, the combination of fluid restriction and diuretics frequently leads to electrolyte abnormalities, dehydration, and, most important, caloric deprivation. Digoxin and other inotropes would not be expected to be very useful because myocardial contractility is increased rather than reduced in infants with PDA (Clyman 2005).

Pharmacotherapy of PDA involves the use of COX inhibitors, which have been shown to be safe and effective in the majority of treated infants (Sekar & Corf, 2008).

For years, Indomethacin, a nonspecific prostaglandin synthetase inhibitor has been the drug of choice for the treatment of PDA worldwide. It has been shown to close 90% of PDAs successfully. However, less mature infants and those treated later after birth are less likely to respond (Evan & Seri, 2003).

Undesirable adverse effects prompted researchers to seek alternative agents. In April 2006, the US Food and Drug Administration approved the use of ibuprofen for closure of clinically significant PDA in premature neonates (Grace, 2007).

Ibuprofen which is a cyclo-oxygenase (COX) inhibitor proved to be effective in closure of the PDA. Moreover it is just effective as Indomethacin in closing PDA in neonates with RDS but with fewer side effects on kidney and brain (Lago et al., 2002). Also studies on animals suggest that Ibuprofen may even have a cyto-protective effect on the gastro-intestinal tracts (Clyman, 2005).

AM OF WORK

The aim of our study was to determine the effectiveness of 2nd course of oral Ibuprofen in closure of patent ductus arteriosus after failure of 1st initial treatment in preterm infants.

REVIEW

Anatomy

Patent Ductus Arteriosus (PDA)

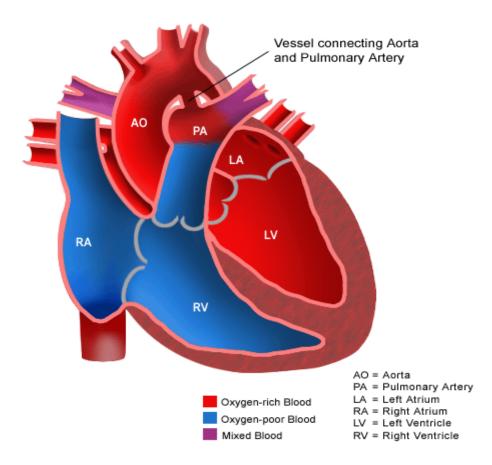


Fig (1): Anatomy of PDA

PDA is a postnatal communication, usually between the main pulmonary trunk and the descending thoracic aorta that's due to the persistent patency of fetal ductus arteriosus (David et al., 2006).

It takes a slight cephalic to caudal direction as it passes from anterior aspect of pulmonary artery to posterior aspect of descending aorta (Mullins & Pagatto, 1998). With a right aortic arch the ductus is

usually left sided, although rarely it arises in mirror image (Musewe & Olley, 1992), the ductus arteriosus on the right, joining the right pulmonary and right aortic arch just distal to the right subclavian artery (Moore et al., 2001). Bilateral ductus is rare (Musewe & Olley, 1992).

The ductus arteriosus may persist in an infinite variety of shapes and sizes (Mullins & Pagatto, 1998).

In the fetus, where at least 50%-60% of cardiac output arises from the right ventricle and transverses the ductus on its way to the systemic circulation, the ductus tends to maintain a **short tubular shape** (Musewe & Olley, 1992). The typical persistent ductus has a **conical shape** with a large aortic end tapering toward pulmonary artery with the narrowest area of the ductus close to the junction with the pulmonary artery. The total length of the persistent ductus, regardless of its shape or diameter may vary from millimeters to centimeters, the base of the aortic end of the ductus can vary in size from several millimeters to centimeters (Mullins & Pagatto, 1998).

At birth however, the ductus undergoes rapid change in size and shape related to the process of constriction and closure. The persistent ductus may therefore be long and thin or short and large depending on how closure progresses (Musewe & Olley, 1992).