Risk stratification of early cardiotoxicity In Children receiving chemotherapy in Pediatric oncology

Thesis submitted for the parial fulfillment of the master degree by Dr. Mai Saeed El-Setouhi

MB.B.ch
Cairo University
Under supervision
Of

Dr. Mohammad Ali Hegazi

Professor of peddiatries and Peddiatrie cardiology Abu El-Reesh hospital cairo University

Dr. Zeinab Salah Selim

Professor of peddiatries and Peddiatrie cardiology Abu El-Reesh hospital cairo University

Dr. Wael Zekri Khaled

Lecturer of pediatric Oncology National cancer institute Cairo University

> Faculty of medicine Cairo University 2010

Abstract

This is a retrospective study of the record of 80 cancer patients at pediatric age group who presented to Children Cancer Hospital Egypt in the period from July 2007 to March 2009.All patients had various types of malignancy and received various chemotherapy protocols. This study included risk factors of cardiotoxicity which are age, sex, cumulative dose of anthracyclines, type of malignancy, mediastinal irradiation, concomitant chemotherapy and underlying cardiac lesions.

Keywords:

Cardiotoxicity, Pediatric oncology, Risk stratification, Chemotherapy, Anthracyclines.

يتعدم الله الرحيم

القاد الماليم الدكيم) على الله العليم الدكيم) على الله العليم الدكيم) مدى الله العظيم

قيقيا قييس (٣٢)چير ٢٣٤)

With all my Love, To my Father (God bless his soul) And Sweet Lovely Mother

ACKNOWLEDGMENT

I wish to express my sincere gratitude to **Prof. Dr. Zeinab**Salah Selim Professor of Pediatrics. Faculty of Medicine, Cairo
University not only for her outstanding support, generous advice,
and valuable guidance, but without her support, this work
wouldn't come to light.

I would like to express my sincere appreciation to **Prof. Dr.**Mohammad Ali Hegazi Professor of Pediatrics, Faculty of medicine, Cairo University for his help and constructive advice.

I am also deeply indebted to **Dr. Wael Zekry Khaled**. Lecturer of pediatric oncology, National Cancer Institute, Cairo University for his most valuable help and advice and meticulous supervision of this work.

Mai Saeed El-Setouhi

List of contents

1- List of tables	I-II-II
2- List of figures	IV
3- List of abbreviations V-VI	-VII
4- Introduction	1
5- Aim of the work	3
6- Review of literature	4
• Chapter 1 (Chemotherapeutic drugs used in pediatric)	4
• Chapter 2	7
(Patterns of Cardiotoxicity) • Chapter 3	24
(Risk factors of chemotherapy induced Cardiotoxicity)	41
Chapter 4	•-
(Management of Cardiotoxicity)	51
7- Patients and methods	65
8- Results	72
9- Discussion	94
10- Summary and conclusion	106
11- Recommendations	109
12- References	110
13- Arabic summary	

List of tables

Table	Subject	Page
1	Methods of Drug delivery for commonly used antineoplastics	4,5,6
2	Risk factors of anthracyclines related cardiotoxicity	42
3	Guidelines for monitoring of Cardiotoxicity during anthracycline therapy in children	50
4	Comparison of Liposomal anthracycline formulation	54
5	Degree of cardiotoxicity according to echocardiographic parameters (CTC, 1998).	70
6	Age group in the study population	72
7	Type of malignancy in the study population.	73
8	Concomitant Chemotherapy with well known cardiotoxic agents.	75
9	Underlying cardiac lesions in the study population.	76
10	Initial and follow up echocardiographic parameters.	78
11	Cardiotoxicity Grades	79

II List of tables

Table	Subject	Page
12	ECG at onset of cardiotoxicity in the study population.	80
13	Electrolytes disturbances among the group of patients with tachyarrythmia.	81
14	Correlation of echocardiographic parameters to age as a risk factor for cardiotoxicity.	82
15	Correlation of echocardiographic parameters to sex as a risk factor for Cardiotoxicity.	83
16	NYHA classification among different anthracyclines dose groups in the study population.	84
17	Correlation between echocardiographic parameters among different anthracyclines cumulative dose groups (Mean+SD, Median).	85
18	Comparison of follow up echocardiographic parameters and percentile changes between the two groups of patients received doxorubicin with concomitant chemotherapy and those who did not receive.	87
19	Comparison of follow up echocardiographic parameters and percentile changes between hematologic and non-hematologic groups.	88
20	Comparative study of degree of cardiotoxicity among the different types of malignancy in the	89

III	List of tables 🕮	
	study population.	
21	Comparison between newly developed valvular lesions frequency between patients received mediastinal irradiation and patients didn't receive irradiation.	92
22	Comparison of echocardiographic parameters between patients received mediastinal irradiation and patients didn't.	93

List of figures

Figur e	Subject	Page
1	Mechanistic role of titin and anthracycline- induced cardiotoxicity	15
2	Normal heart and DCM	29
3	Changes characteristic of anthracycline-induced cardiotoxicity in the left ventricle	30
4	Typical M-mode images (A, B and C)	38
5	Sex distribution among the study population	72
6	Distribution of malignancy groups in the study population	73
7	Patients groups according to the cumulative dose of doxorubicin	74
8	Mediastinal irradiation distribution in the study population	75
9	Underlying cardiac lesions distribution in the study population	76
10	NYHA classes' distribution in the study population.	77
11	Radiological findings in the study population	79
12	Comparison of Medians_of EF decline % among different anthracyclines cumulative dose groups	86
13 14	Comparison among different types of malignancy regarding the EF and FS change %.	90
15	Correlation between types of malignancy to cumulative dose of chemotherapy in the study	91

List of Abbreviations

Tow dimensional
5-fluorouracil
Angiotensin converting enzyme
sin converting enzyme inhibitors
equired immunodeficiency syndrome
Acute Lymphoblastic leukemia
Acute Myeloid Leukemia
Analysis of variance
Atrial natriuretic peptide
Anthracyclines
Aortic regurge
Angiotensin receptor blockers
Aortic stenosis
Atrial Septal Defect
Atrioventricular
Atrioventricular septal defect
Bundle Branch Block
B-natriuretic peptide
coronary artery disease
Children Cancer Hospital Egypt
Children's Cancer Study Group
Congenital Heart Disease
Congestive heart Failure
Coenzyme Q10
Common toxicity Criteria
Daunomycin
Dilated cardiomyopathy
end-diastolic dimension

DOX	Doxorubicin
Ds	end-systolic dimension
DVT	Deep venous thrombosis
DZX	Dexrazoxane
ECG	Electrocardiogram
ECOG	. Eastern Cooperative Oncology Group
	Ejection Fraction
EFS	Event Free Survival
ES	Ewing's Sarcoma
FS	Fraction Shortening
Gy	Gray
HD	Hodgkin's disease
HF	Heart Failure
Hz	Hertz
IGF-1	Insulin growth factor-1
IL-2	Interleukin-2
IMRD	Intensity modulated radiotherapy
IV	Intravenous
K	Potassium
LR	Low Risk
LV	Left ventricle
LVD	Left ventricular dilatation
LVEF	Left ventricular Ejection Fraction
LVFS	Left ventricular Fraction Shortening
	Magnesium
MHZ	Mega Hertz.
MI	myocardial infarction
M-Mode	Motion- Mode
MR	Mitral regurge
NB	Neuroblastoma
NCI	National Cancer Institute

NHL	Non-Hodgkin Lymphoma
NS	Not Significant
NYHA	New York Heart Association
OS	Osteosarcoma
PBF	Pressure blood flow
PDA	Patent Ductus Arteriosus
PET	Positron-emission tomography
	Pulmonary stenosis
PW	Pulsed wave
RAS	Reticular activating system
	Rheumatic heart disease
RNA	Radionuclide angiocardiography
ROS	Reactive oxygen species
	Radiotherapy
SD	Standard deviation
SF	Shortening Fraction
SR	Standard Risk
STEPSystem	for Thalidomide Education and Prescribing Safety
_	Supraventricular Tachycardia
SWT	Septal wall thickening
	transposition of great arteries
UK	United Kingdom
US	United States
VSD	Ventricular septal defect
	Wilm's Tumor

Introduction

Cytostatic antibiotics of the anthracycline class are the best known of the chemotherapeutic agents that cause cardiotoxicity. Alkylating agents such as cyclophosphamide, ifosfamide, cisplatin, Bleomycin and mitoxantrone have also been associated with cardiotoxicity. Other agents that may induce a cardiac event include paclitaxel, etoposide, teniposide, the vinca alkaloids, fluorouracil, cytarabine, amsacrine, cladribine, asparaginase and tretinoin. Cardiotoxicity is rare with some agents, but may occur in >20% of patients treated with doxorubicin and daunorubicin, (*Pai*, *et al.*, *2000*).

Cytotoxic drugs cause damage to cardiac cells, especially in combination with radiotherapy. Furthermore, cardiotoxicity increases with the cumulative dose and may lead to congestive heart failure and cardiomyopathy. Other factors, including age, gender, pre-existing cardiac disease, length of follow-up, route of administration, concomitant exposure to some chemotherapeutic drugs, trisomy 21 and black race, play a role in increasing the risk of cardiac dysfunction. (*Nadia et al.*, 2008).

The fact that anthracyclines are cardiotoxic seriously narrows their therapeutic index in cancer therapy. *The prevention of anthracycline-induced cardiotoxicity is particularly important in children who can be expected to survive for decades after being cured of their malignancy*. Attempts to reduce anthracycline cardiotoxicity have been directed towards: (i) decreasing myocardial concentrations of anthracyclines and their metabolites by dose limitation and schedule modification; (ii) developing less cardio-

toxic analogs; and (iii) concurrently administering cardioprotective agents to attenuate the effects of anthracyclines on the heart. As regards schedule modification, avoidance of anthracycline peak levels may reduce the pathologic and clinical cardiotoxicity, although this has not always been observed, (*Arussi et al.*, 2005).

Cardiotoxicity may occur during or shortly after treatment, within days or weeks after treatment, or may not be apparent until months, and sometimes years, after completion of chemotherapy. Some diseases require aggressive treatment with chemotherapy including some cardiotoxic drugs such as: anthracyclines, 5-fluorouracil, cyclophosphamide and the taxoids, plus radiotherapy (Mediastinal Radiation). In addition some diseases require aggressive/ short period condensed courses like Acute Myeloid Leukemia, Burkitt's Lymphoma which ends in cardiotoxicity. (*Arussi et al.*, 2005).

Patterns of cardiotoxicity:

Cardiac affection might be seen as an initial presentation in newly diagnosed cases of pediatric cancer. Such toxicity manifested by heterogeneous group of disorders, ranging from relatively benign arrhythmias to potentially lethal conditions such as myocardial ischemia/infarction and cardiomyopathy, Pericardial effusion, cardiomegaly or can be seen *very early* during the course of treatment like latent cardiac dysfunction, valvular lesions (*mitral or aortic regurge due to mediastinal radiation*), and carotid intimal thickening. Common cardiovascular manifestations of these therapies include heart failure, hypotension, hypertension, QT prolongation, arrhythmias, and thromboembolism, (*Edward*, 2006).