Ain Shams University Faculty of Science

CHEMICAL STUDIES ON POLYANILINE TITANOTUNGSTATE AS A NEW COMPOSITE CATION EXCHANGER AND ITS ANALYTICAL APPLICATIONS FOR REMOVAL OF CESIUM FROM AQUEOUS SOLUTIONS

A PhD Thesis Submitted

To

Chemistry Department Faculty of Science Ain Shams University

By

MAGDY KHALIL MOHAMED IBRAHIM

M. Sc. (Inorganic Chemistry)
Department of Nuclear Fuel Technology
Hot Laboratories Center
Atomic Energy Authority

CHEMICAL STUDIES ON POLYANILINE TITANOTUNGSTATE AS A NEW COMPOSITE CATION EXCHANGER AND ITS ANALYTICAL APPLICATIONS FOR REMOVAL OF CESIUM FROM AQUEOUS SOLUTIONS

A PhD Thesis Submitted To

Chemistry Department Faculty of Science - Ain Shams University

For **Degree doctor of philosophy of science (Chemistry)**

By

MAGDY KHALIL MOHAMED IBRAHIM

M. Sc. (Chemistry)
Department of Nuclear Fuel Technology
Hot Laboratories Center
Atomic Energy Authority

Supervised By

Prof. Dr. M. F. El-Shahat

Prof. of Analytical and Inorganic Chemistry Faculty of Science Ain Shams University Prof. Dr. I. M. El-Naggar

Prof. of Physical Chemistry Hot Laboratories Centre Atomic Energy Authority

Prof. Dr. E. S. Zakaria

Prof. of Physical Chemistry Hot Laboratories Centre Atomic Energy Authority Prof. Dr. I. M. Ali

Prof. of Physical Chemistry Hot Laboratories Centre Atomic Energy Authority

Approval Sheet for Submission

A Thesis Title

CHEMICAL STUDIES ON POLYANILINE TITANOTUNGSTATE AS A NEW COMPOSITE CATION EXCHANGER AND ITS ANALYTICAL APPLICATIONS FOR REMOVAL OF CESIUM FROM AQUEOUS SOLUTIONS

A thesis Submitted By

MAGDY KHALIL MOHAMED IBRAHIM

M.Sc. (Inorganic Chemistry)

This thesis has been approved for submission by supervisors

Thesis Advisors:	Signature
1- Prof. Dr. M. F. El-Shahat	
Prof. of Analytical and Inorganic Chemistry	
Ain Shams University	
2- Prof. Dr. I. M. El-Naggar	
Prof. of Physical Chemistry	
Atomic Energy Authority	
3- Prof. Dr. E. S. Zakaria	
Prof. of Physical Chemistry	
Atomic Energy Authority	
4- Prof. Dr. I. M. Ali	
Prof. of Physical Chemistry	
Atomic Energy Authority	

Credit

Head of the Department of Chemistry

Prof. Dr. Maged S. Antanious

ACKNOWLEDGEMENT

I am deeply thankful to my "ALLAH", by the grace of whom, the progress and success of this work was possible. I would like to express my deep gratitude and appreciation to my thesis supervisor's committee members:

Prof. Dr. Mohamed F. El-Shahat, professor of Analytical and Inorganic Chemistry, Faculty of Science, Ain Shams University for sponsoring this work, his continuous encouragement and help during the progress of this study.

Prof. Dr. Ibrahim M. El-Naggar, professor of Physical Chemistry, Nuclear Fuel Technology Department, Hot Laboratories Centre, Atomic Energy Authority for suggesting and planning the research project throughout the whole investigations, direct supervision, her unlimited help, continuous encouragement, valuable comments, and his insight on both the professional and personal levels which gave me the greatest helps to accomplish this study.

Prof. Dr. Essam S. Zakaria and Prof. Dr. Ismail M. Ali, professors of Physical Chemistry, Nuclear Fuel Technology Department, Hot Laboratories Centre, Atomic Energy Authority for direct supervision, continuous guidance, continuous advice, sincere help and significant encouragement during the experimental work, and preparation of the thesis.

I would like to thank all the staff members and colleagues of the Nuclear Fuel Technology Department, Hot Laboratories Centre, Atomic Energy Authority for their cooperation and useful help offered during this work.

Finally, I wish to thank all the members of my family, specially my parents, my wife and my sons for their assistance and patience during the program of this work.

M. Khali

بشيب اللمالخ الرحب

صالله ذق العَظيم

CONTENTS

_____ M. Khalil

\mathbf{C}	\mathbf{O}	N'	\mathbf{T}	וה	VΊ	Γ \mathbf{C}
		•		. 7	•	

List of	Tables	IV
List of	Figures	\mathbf{V}
	Publications	IX
Aim of	`Work	X
Abstra	ct	XI
	CITA DELLE A	
	CHAPTER-1	
4.4	INTRODUCTION	•
1.1.	Inorganic Ion Exchangers	2
1.2.	Synthetic Organic Ion Exchangers	4
	1.2.1. Polystyrene divinylbenzene	5
	1.2.2. Phenolic	5
	1.2.3. Acrylic	5
1.3.	Composites Ion Exchangers	6
	1.3.1. Amines	8
	1.3.2. Nylon-6,6	8
	1.3.3. Polycarylonitrile	8
	1.3.4. Polypyrrole	9
	1.3.5. Polymethyl methacrylate	10
	1.3.6. Polyaniline	10
1.4.	Characterization of Ion Exchangers	11
	1.4.1. Ion exchange capacity	11
	1.4.2. Chemical and thermal stability	13
	1.4.3. Selectivity of ion exchanger	14
	1.4.3.1. Ion sieve effect.	16
	1.4.3.2. Steric effect	16
1.5	Concepts of Ion Exchange	17
	1.5.1. Kinetics of ion exchange	18
	1.5.1.1. Mechanism of ion exchange	18
	1.5.1.2. Rate-determining step	22
	1.5.2. Equilibrium isotherm	25
	1.5.2.1. Freundlich isotherm.	26
	1.5.2.2. Langmuir isotherm	26
	1.5.3. Thermodynamic of ion exchange	28
	1.5.4. Distribution coefficient (K _d)	28
	1.5. 1. Distribution coefficient (13d)	40

CONTENTS

_	M. Kh	alil
	1.5.5. Column processes	
	Applications of Ion Exchangers	
	Ion exchangers Showing High Selectivity for Cesium	
	1.7.1. Organic ion exchangers with high selectivity for cesium.	
	1.7.2. Inorganic ion exchangers with high selectivity for cesium	
	1.7.2.1. Heteropolyacid salts	
	1.7.2.2. Insoluble hexacyanoferrate(II) salts of transition metals	
	1.7.2.3. Insoluble hexacyanoferrate(III) salts of transition metals	
	1.7.2.4. Zeolites	
	1.7.2.5. Hydrous oxides	
	1.7.2.6. Acid salts of metals	
	Recent Developments	
	CHAPTER-2	
	MATERIALS AND METHODS	
	Chemicals and Reagents	
	Radioactive Materials	
	Preparation of the Reagent Solutions	
	Synthesis of Polyaniline	
	Synthesis of Titanotungstate (TiW)	
	Synthesis of Polyaniline Titanotungstate (PATiW)	
	Instruments and Characterization of Materials	
	Elemental Composition	
	Chemical Stability	
	pH Titration	
	Ion-Exchange Capacity (IEC)	
	Distribution Studies	
	Separation Factor	
	Kinetic Studies	
	Sorption Isotherms	
	Column Operations	
	Recovery of Cesium from Milk	

CHAPTER-3 RESULTS AND DISCUSSION

3.1.	Characterization of Materials	56
	3.1.1. IR spectra	56
	3.1.2. X-ray diffraction patterns	60
	3.1.3. Scanning electron microscopy (SEM) studies	60
	3.1.4. Thermal analysis	68
	3.1.5. Elemental composition of PATiW	68
	3.1.6. Chemical stability	70
	3.1.7. pH Titration	70
	3.1.8. Ion-Exchange Capacity (IEC)	73
3.2.	Distribution Studies	76
	3.2.1. Separation factor	86
3.3.	Kinetic Studies	87
	3.3.1. Effect of initial concentration and contact time	88
	3.3.2. Effect of particle size	93
	3.3.3. Effect of contact time and reaction temperature	97
	3.3.4. Effect of drying temperature	103
	3.3.5. Sorption kinetics modeling	103
	3.3.5.1. Pseudo first-order model	107
	3.3.5.2. Pseudo second-order model	107
	3.3.5.3. The homogeneous particle diffusion model (HPDM).	114
	3.3.5.4. The shell progressive model (SPM)	116
	3.3.5.5. Intraparticle diffusion model	131
3.4.	Sorption Isotherms	133
	3.4.1. Freundlich isotherm	137
	3.4.2. Langmuir isotherm	143
3.5.	Column Operations	151
3.6.	Recover Cesium from Milk	157
SUMN	IARY	160
	RENCES	165
	IC SUMMARY	

LIST of TABLES

Table 1	Few applications of ion exchange materials including both well-developed and experimental techniques	32
Table 2	Chemical stability of TiW and PATiW in various solvent systems	71
Table 3	Factors affecting on preparation of PATiW and the percent of	74
Table 4	sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ ions at 10^{-4} M and at V/m 100	84
	Mo^{6+} and separation factors $(\alpha_B^{Cs^+})$ of Cs^+ from other metal ions at	
	different concentrations of HNO ₃ on PATiW at 25 ± 1 °C	
Table 5	Thermodynamic parameters for the sorption of Cs ⁺ on TiW and PATiW at V/m 50 and at different reaction temperatures	102
Table 6	The calculated parameters of the pseudo second-order kinetic model for Cs ⁺ onto TiW and PATiW at V/m 50 and at different	113
	reaction temperatures	
Table 7	Diffusion coefficients for the sorption of Cs ⁺ onto TiW and PATiW at V/m 50 and at different reaction	126
	temperatures	
Table 8	Kinetic parameters for the sorption of Cs ⁺ onto TiW and PATiW	130
Table 9	Intraparticle diffusion rate constant for the sorption Cs ⁺ onto TiW and PATiW at V/m 50 and at different reaction	136
	temperatures	
Table 10	Freundlich and Langmuir isotherm parameters for the sorption of Cs ⁺ onto TiW and PATiW at V/m 50 and at different reaction	147
	t e m p e r a t u r e s	

LIST of FIGURES

Figure 1	Equivalent character of ion exchange	19
Figure 2	Mass transfer at ion exchange process	20
Figure 3	General mechanism of the ion exchange process	21
Figure 4	FTIR spectrum of a prepared polyaniline	57
Figure 5	FTIR spectrum of a prepared TiW	58
Figure 6	FTIR spectum of a prepared PATiW composite material.	59
Figure 7	FTIR spectra of a prepared PATiW composite material at	61
Eigen 0	different drying temperatures	()
Figure 8	XRD patterns of PATiW at different drying temperatures.	62
Figure 9	Scanning electron microphotographs (SEM) of chemically prepared polyaniline at the magnification of 900×	63
Figure 10	Scanning electron microphotographs (SEM) of chemically prepared TiW dried at 50 °C at the magnification of 3000×	64
Figure 11	Scanning electron microphotographs (SEM) of chemically prepared TiW dried at 850 °C at the magnification of 3000×	65
Figure 12	Scanning electron microphotographs (SEM) of chemically prepared PTiW dried at 50 °C at the magnification of 2000×	66
Figure 13	Scanning electron microphotographs (SEM) of chemically prepared PTiW dried at 850 °C at the magnification of 3000×	67
Figure 14	TGA-DTA thermogram of PATiW	69
Figure 15	The pH-titration curve of PATiW with 0.1M NaOH	72
Figure 16	Plots of capacity versus pH for exchange of Cs ⁺ on PATiW at 0.1M, V/m 100 and 25 ±1 °C	75
Figure 17	Plots of log K _d versus pH for exchange of Cs ⁺ on TiW and PATiW at 10 ⁻⁴ M, V/m 50 and 25 ±1 °C	78
Figure 18	Plots of log K _d versus pH for exchange of Cs ⁺ on TiW at 10 ⁻⁴ M and V/m 50 at different reaction temperatures	79
Figure 19	Plots of log K _d versus pH for exchange of Cs ⁺ on PATiW at 10 ⁻⁴ M and V/m 50 at different reaction temperatures	80
Figure 20	Plots of log K _d versus pH for exchange of Cs ⁺ on PATiW	81

	at 10 ⁻⁴ M and V/m 50 at different drying temperatures	
Figure 21	Plots of K_d versus pH for exchange of Cs^+ , Co^{2+} , Zn^{2+} , Cd^{2+} , Cu^{2+} , Cr^{3+} , Zr^{4+} , As^{5+} , V^{5+} and Mo^{6+} at 25 ±1 °C on PATiW at $10^{-4}M$, V/m 50 of Cs^+ and $10^{-5}M$, V/m 100 for	83
	other ions	
Figure 22	Effect of initial ion concentration and contact time on the amount sorbed of Cs ⁺ onto TiW V/m 50 and 25 ±1 °C.	89
Figure 23	Effect of initial ion concentration and contact time on the amount sorbed of Cs ⁺ onto PATiW at V/m 50 and 25 ±1 °C.	90
Figure 24	Plots of F versus time for sorption of Cs ⁺ onto TiW at different initial ion concentration, V/m 50 and 25 ±1 °C	91
Figure 25	Plots of F versus time for sorption of Cs ⁺ onto PATiW at different initial ion concentration, V/m 50 and 25 ±1 °C.	92
Figure 26	Plots of F and Bt versus time for sorption of Cs ⁺ onto TiW at different particular sizes, V/m 50 and 25 ±1 °C	94
Figure 27	Plots of F and Bt versus time for sorption of Cs ⁺ onto PATiW at different particular sizes, V/m 50 and 25 ±1 °C	95
Figure 28	Plots of B versus 1/r ² for sorption of Cs ⁺ onto TiW and PATiW	96
Figure 29	Plots of F and Bt versus time for sorption of Cs ⁺ onto TiW at V/m 50 and at different reaction temperatures	98
Figure 30	Plots of F and Bt versus time for sorption of Cs ⁺ onto PATiW at V/m 50 and at different reaction temperatures	99
Figure 31	Relationship between Gibbs free energy change and temperature of sorption of Cs ⁺ onto TiW and PATiW at different reaction temperatures	101
Figure 32	Plots of F and Bt versus time for sorption of Cs ⁺ onto TiW dried at 50, 200, 400 °C, at V/m 50 and reaction temperature 25 ±1 °C	104
Figure 33	Plots of F and Bt versus time for sorption of Cs ⁺ onto PATiW dried at 50, 200, 400 °C at V/m 50 and reaction temperature 25 ±1 °C	105
Figure 34	Pseudo first-order kinetic plots for the sorption of Cs ⁺ onto TiW at V/m 50 and at different reaction temperatures	108

Figure 35	Pseudo first-order kinetic plots for the sorption of Cs ⁺ onto	109
Figure 36	PATiW at V/m 50 and at different reaction temperatures Pseudo second-order kinetic plots for the sorption of Cs ⁺ onto TiW at V/m 50 and at different reaction temperatures.	111
Figure 37	Pseudo second-order kinetic plots for the sorption of Cs ⁺ onto PATiW at V/m 50 and at different reaction	112
Figure 38	Plots of -ln(1-F) as a function of time for the diffusion of Cs ⁺ onto TiW at V/m 50 and at different reaction	117
Figure 39	Plots of -ln(1-F) as a function of time for the diffusion of Cs ⁺ onto PATiW at V/m 50 and at different reaction	118
Figure 40	Plots of -ln(1-F ²) as a function of time for the diffusion of Cs ⁺ onto TiW at V/m 50 and at different reaction	119
Figure 41	Plots of -ln(1-F ²) as a function of time for the diffusion of Cs ⁺ onto PATiW at V/m 50 and at different reaction	120
Figure 42	temperatures	122
Figure 43	Plots of [3-3(1-F) ^{2/3} -2F] as a function of time for the diffusion of Cs ⁺ onto PATiW at V/m 50 and at	123
Figure 44	Plots of [1-(1-F) ^{1/3}] as a function of time for the diffusion of Cs ⁺ onto TiW at V/m 50 and at different	124
Figure 45	reaction temperatures	125
Figure 46	Arrhenius plots for the particle diffusion coefficients of Cs ⁺ sorbed onto TiW and PATiW	129
Figure 47	Morris–Weber kinetic plots for the sorption of Cs ⁺ onto TiW at V/m 50 and different reaction temperature	134
Figure 48	Morris–Weber kinetic plots for the sorption of Cs ⁺ onto	135

	PATiW at V/m 50 and at different reaction temperatures	
Figure 49	Plots q _e versus C _e for sorption isotherm of Cs ⁺ onto	138
	TiW at V/m 50 and at different reaction temperatures	
Figure 50	Plots q _e versus C _e for sorption isotherm of Cs ⁺ onto PATiW	139
	at V/m 50 and at different reaction temperatures	
Figure 51	Freundlich isotherm plots for sorption of Cs ⁺ onto TiW	141
	at V/m 50 and at different reaction temperature	
Figure 52	Freundlich isotherm plots for sorption of Cs ⁺ onto PATiW	142
	at V/m 50 and at different reaction temperatures	
Figure 53	Langmiur isotherm plots for sorption of Cs ⁺ onto TiW	145
	at V/m 50 and at different reaction temperatures	
Figure 54	Langmiur isotherm plots for sorption of Cs ⁺ onto PATiW	146
	at V/m 50 and at different reaction temperatures	
Figure 55	plots of separation factor, R _L , versus initial concentration,	149
	C _o , for sorption of Cs ⁺ onto TiW at V/m 50 and at different	
	reaction temperatures	
Figure 56	plots of separation factor, R _L , versus initial concentration,	150
	C _o , for sorption of Cs ⁺ onto PATiW at V/m 50 and at	
	different reaction temperatures	
Figure 57		153
	neutral solutions at different bed depth, 140 mg L ⁻¹ and	
	flow rate 2.5 ml min ⁻¹	
Figure 58	Performance of PATiW column for cesium removal from	155
	alkaline and acidic simulant solutions at bed depth 1cm,13	
	mg L ⁻¹ and flow rate 0.7 ml min ⁻¹	
Figure 59	Redaction of cesium-134 on PATiW as a function of	159
	mixing time at V/m 50 and 25 ± 1 °C	

Chemical Studies on Polyaniline Titanotungstate as a New Composite Cation Exchanger and Its Analytical Applications for Removal of Cesium from Aqueous Solutions

List of Publications

- 1. I.M. El-Naggar, E.S. Zakaria, I.M. Ali, M. Khalil, M.F. El-Shahat, Kinetic modeling analysis for the removal of cesium ions from aqueous solutions using polyaniline titanotungstate, Arabian Journal of Chemistry (2012) 5, 109–119.
- **2.** I.M. El-Naggar, E.S. Zakaria, I.M. Ali, M. Khalil, M.F. El-Shahat, Chemical studies on polyaniline titanotungstate and its uses to reduction cesium from solutions and polluted milk, Journal of Environmental Radioactivity (2012) 112, 108-117.

Aim of Work

The latest developments of synthetic ion exchangers are the preparation and the application of inorganic-organic composite ion exchangers in order to obtain a combination of the advantages of inorganic and organic ion exchangers. These materials are used in analytical chemistry and in separation technology, because of their high selectivity's for metal ions and ease of preparation. Many inorganicorganic composite ion exchangers have been developed earlier by incorporation of organic polymers in the inorganic matrix. In order to increase interlayer distance of layered inorganic ion exchangers, to increase the selectivity's for the ions and to prepare larger particles with higher granular strength for column for the treatment of various aqueous solutions and radioactive waste from cesium. This may open new possibilities for their industrial applications. In this concern, efforts have been made to study and develop effective and economic materials for treatment cesium ion from aqueous solutions waste using polyaniline titanotungstate. The following items will be studied:

- Synthesis of polyaniline titanotungestate.
- Characterization of the prepared material using IR, XRD, SEM and DTA-TGA analysis.
- Chemical stability, equilibrium studies and capacities of the prepared material for Cs⁺ at different operation conditions.
- Determination of the diffusion mechanisms and selectivity of these materials.
- Ion exchange isotherms.
- Separation of Cs⁺ from other ions.