Ain Shams University Faculty of Science Chemistry Department

Preparation of Nano Scale Micro Emulsion Binders and Their Utilization through New System For Pigment Printing

By

Zain El-Abedein Mohamed Mahmoud

M. Sc. in Science (Chemistry)

A Thesis Submitted for Degree of Doctor of Philosophy of Science

To
Chemistry Department
Faculty of Science
Ain Shams University
2013

Ain Shams University Faculty of Science Chemistry Department

Preparation of Nano Scale Micro Emulsion Binders and Their Utilization through New System for Pigment Printing

Thesis
Submitted by

Zain El-Abedein Mohamed Mahmoud

(M. Sc. in Chemistry)

For Fulfillment of the Degree of Ph. D. in Chemistry

Supervised by

Prof. Dr. Ahmed Ismail Hashem

Professor of Organic Chemistry, Department of Chemistry, Faculty of Science, Ain Shams University.

Prof. Dr. Karima Mohamed Mounir Haggag

Professor of Textile Chemistry and Technology, Dyeing, Printing and Auxiliaries Department, Textile Research Division, NRC.

Prof. Dr. Abdel Rahim Ramadan Abdel Ghani

Professor of Textile Chemistry, Faculty of Applied Arts, Hellwan University

Prof. Dr. Fayza Abdel Aziz Kantouch

Professor of Textile printing, Dyeing, Printing and Auxiliaries Department, Textile Research Division, NRC.

Approval Sheet

Entitled: Preparation of Nano Scale Micro Emulsion Binders and Their Utilization through New System For Pigment Printing

Submitted by

Zain El-Abedein Mohamed Mahmoud

For Ph. D. in Chemistry

Is Approved by Thesis Advisors

Signature

Prof. Dr. Ahmed Ismail Hashem

Professor of Organic Chemistry Department of Chemistry Faculty of Science, Ain Shams University.

Prof. Dr. Karima Mohamed Mounir Haggag

Professor of Textile Chemistry and Technology Department of Dyeing, Printing and Auxiliaries. Textile Research Division, National Research Center.

Prof. Dr. Abdel Rahim Ramadan Abdel Ghani

Professor of Textile Chemistry Faculty of Applied Arts Hellwan University

Prof. Dr. Fayza Abdel Aziz Kantouch

Professor of Textile printing Department of Dyeing, Printing and Auxiliaries. Textile Research Division, National Research Center.

Head of Chemistry Department

Maged Shafik Antonious

Acknowledgment

ACKNOWLEDGMENT

First and foremost, I kneel meekly to **ALLAH**, thanking **HIM** for paving the way for me.

I wish to express my thanks and appreciation to *Prof. Dr. Ahmed Ismail Hashem*, Professor of Organic Chemistry, Faculty of Science, Ain Shams University for his supervision, kind cooperation, valuable help and encouragement.

Deepest thanks, sincere gratitude and appreciation are due to *Prof. Dr. Karima Mohamed Mounir Haggag*, Professor of Textile Chemistry and Technology, Textile Research Division, National Research Center, for suggesting the present line of work, continuous supervision, valuable discussion, and careful guidance.

With sincere respect and gratitude, I would like to thank *Prof. Dr. Abdel Raheim Ramadan Abdel Ghani*, Professor of Textile Chemistry, Faculty of Applied Arts, Hellwan University for supervision, kind help, valuable advices, and encouragement.

Thanks are also due to *Prof. Dr. Fayza Abdel Aziz Kantouch* Professor of Textile printing, Textile Research Division, National Research Center, for here supervision and continuous help during the course of this work and continuous encouragement.

Contents

CONTENTS

	Page
List of Figures	i
List of Tables	iii
List of Schemes	v
Abstract	vi
Summary	viii
I. Introduction	
I.1. Textile Printing	1
I.1.1. Distinguishing printing from dyeing	1
I.1.2. Printing styles	2
I.1.2.1. Direct printing	2
I.1.2.2. Discharge printing	2
I.1.2.3. Resist printing	3
I.1.3. Printing methods	3
I.1.3.1. Block printing	3
I.1.3.2. Roller printing	4
I.1.3.3. Stencil printing	4
I.1.3.4. Screen printing	5
I.1.3.4.1. Flat screen printing	5
I.1.3.4.2. Rotary screen printing	6
I.1.3.5. Transfer printing	6
I.1.3.5.1. Dry heat transfer printing	7

I.1.3.5.2. Wet heat transfer printing	7
I.1.3.6. Batik printing	8
I.1.3.7. Foam printing	9
I.1.3.8. Ink jet printing	9
I.2. Pigment Printing	10
I.2.1. Pigment dispersion	12
I.2.1.1. Pigment classification	13
I.2.1.1.1 Inorganic pigments	13
I.2.1.1.2. Organic pigments	15
I.2.2. Thickening agents	16
I.2.3. Binder systems	18
I.2.3.1. The physical forms of binders	19
I.2.3.1.1. Aqueous polymer solutions	19
I.2.3.1.2. Aqueous binder dispersions	20
I.2.3.2. Important characters of binders	20
I.2.3.3. Crosslinking of binder	22
I.2.3.4. Mechanism of binder film formation	24
I.2.3.5. New binder systems	24
I.2.3.5.1. Binders chemically bonded to pigments	24
I.2.3.5.2. Binders based on agricultural derivatives and byproducts	25
I.2.3.5.3. Low - or - non curing binders systems	27
I.3. Textile Fibers	28

I.3.1. Natural fibers	28
I.3.2. Man made fibers	28
I.3.2.1. Regenerated fibers	29
I.3.2.2. Synthetic fibers	29
I.3.3. Cotton fibers	29
I.3.3.1. Chemical structure of cellulose	30
I.3.4. Polyester Fibers	30
I.3.4.1. Fiber structure	30
I.4. Emulsion polymerization	32
I.4.1. Microemulsion polymerization	33
I.5. Nanotechnology	34
I.6. Click Chemistry	35
I.6.1. Known Applications of Click Chemistry	36
I.6.1. Copper (I)-catalyzed Azide-Alkyne Cycloaddition (CuAAC).	37
I.6.2. Ligand assistance	38
II. Materials and Methods	
II.1. Materials	40
II.1.1. Fabric	40
II.1.2. Pigment	40
II.1.3. Binder	40
II.1.4. Printing auxiliaries	40
II.1.5. Emulsion polymerization chemicals	41