COMPARATIVE STUDY BETWEEN PANRETINAL PHOTOCOAGULATION VERSUS COMBINED PANRETINAL PHOTOCOAGULATION AND INTRAVITREAL BEVACIZUMAB INJECTION IN TREATMENT OF PROLIFERATIVE DIABETIC RETINOPATHY

Thesis

Submitted for partial fulfillment of M.D degree in ophthalmology

By

Nour El-Din Hussein Abu Zaid

M.B.B.Ch, M.S Supervised by

Prof. Dr. Magdy Mohamed El-Barbary

Professor of ophthalmology Faculty of Medicine Ain Shams University

Prof.Dr. Tarek Ahmed El-Mamoun

Professor of ophthalmology Faculty of Medicine Ain Shams University

Ass.Prof. Dr. Mohamed Abd El-Hakim Zaki

Assistant Professor of ophthalmology Faculty of Medicine Ain Shams University

> Ain Shams University Cairo 2014

Acknowledegment

First, my deepest gratitude to God who gave me the power to complete this work. Without his care, nothing could have been achieved.

I would like to express my most profound gratitude to professor doctor Magdy El Barbary for his constant encouragement, unlimited help, stimulation, suggestions, excellent advice and constant support.

I would like to express my most gratitude to professor doctor Tarek Mamoun for his infinite help and guidance.

I would like to endless gratitude to assistant professor doctor Mohamed Abd El Hakim for his kind supervision and continuous help throughout this work.

Last but not least, my most sincere gratitude to my family for their continuous encouragement and spiritual support.

Contents

List of figures	I
List of tables	
List of abbreviations	IV
Protocol and aim of work	1
Review of literature	6
Patients and methods	52
Results	59
Discussion	76
Conclusion	84
Summary	85
References	86

List of figures

- 1. Figure 1:Clinical posterior pole.
- 2. Figure 2:Foveal avascular zone.
- 3. Figure 3: Cross section of the fovea.
- 4. Figure 4:Normal macular thickness.
- 5. Figure 5:Mircro-aneurysm.
- 6. Figure 6:Intra-retinal microangiopathy.
- 7. Figure 7:Neovascularization.
- 8. Figure 8:Fibrovasular proliferation.
- 9. Figure 9:Advanced diabetic retinopathy.
- 10. Figure 10:Tractional retinal detachment.
- 11. Figure 11: Fundus fluorescein camera.
- 12. Figure 12: OCT.
- 13. Figure 13: IRIS Medical laser instrument.
- 14. Figure 14: Volk superquad 160 lens:
- 15. Figure 15: Comparison between study groups as regards mean age.
- 16. Figure 16: Comparison between study groups as regards mean sex distribution.
- 17. Figure 17: Comparison between study groups as regards mean BCVAalong the follow up period.
- 18. Figure 18: Fundus fluorescein angiography of a case of active PDR before and after PRP.

- 19. Figure 19: Fundus fluorescein angiography of a case of active PDR before and after PRP with bevacizumab injection.
- 20. Figure 20:Comparison between study groups as regards mean total area of fluorescein leakage (mm²) along the follow up period.
- 21. Figure 21: Comparison between study groups as regards mean central macular thicknessalong the follow up period.
- 22. Figure 22: First case of vitreomacular traction after 12 weeks following panretinal photocoagulation with bevacizumab injection.
- 23. Figure 23: Second case of vitreomacular traction after 12 weeks following panretinal photocoagulation with bevacizumab injection.
- 24. Figure 24: Third case of vitreomacular traction after 12 weeks following panretinal photocoagulation with bevacizumab injection.
- 25. Figure 25:shows case of severe preretinal haemorrhage following panretinal photocoagulation with bevacizumab injection.

List of Tables

- 1. Table 1: Conversion of BCVA.
- 2. Table 2: Results of PRP alone group as regards BCVA.
- 3. Table 3: Results of PRP plus group as regards BCVA.
- 4. Table 4: Results of PRP alone group as regards total area of neovessels.
- 5. Table 5: Results of PRP plus group as regards total area of neovessels.
- 6. Table 6: Results of PRP alone group as regards central macular thickness.
- 7. Table 7: Results of PRP plus group as regards central macular thickness.
- 8. Table 8: The raw data of the patients of PRP alone group.
- 9. Table 9: The raw data of the patients of PRP plus group.

List of Abbreviations

ANOVA: analysis of variance.

Anti-VEGF: anti-vascular endothelial growth factor.

AMD: age related macular degeneration.

BCVA: best corrected visual acuity.

DME: diabetic macular edema.

DR: diabetic retinopathy.

DRS: diabetic retinopathy study.

ELM: external limiting membrane.

ETDRS: early treatment of diabetic retinopathy study.

FAZ: foveal avascular zone.

FFA: fundus fluorescein angiography.

GCL: ganglion cell layer.

ICAM: intercellular adhesion molecule.

IOP: intraocular pressure.

ILM: internal limiting membrane.

INL:inner nuclear layer.

IPL: Inner plexiform layer.

IRMA: intra-retinal micro-angiopathy.

IVB: intravitreal bevacizumab injection.

IVR: intravitreal ranizumab injection.

Log. MAR: logarithm of minimal angle of resolution.

msec: milli- second.

mm²: milli-meter square.

NFL: nerve fiber layer.

nm: nanometer

NPDR:non proliferative diabetic retinopathy.

NV: neovascularization.

NVD: neovascularization at the disc.

OCT: optical coherence tomography.

ONL:outer nuclear layer.

OPL: outer plexiform layer.

PDR: proliferative diabetic retinopathy.

PKC:protein kinase C

PRP: pan-retinalphotocoagulation.

PPV: pars plana vitrectomy.

RPE: retinal pigmented epithelium.

SPSS: Statistical package for social sciences.

TRD: tractional retinal detachment.

um: micro meter.

VA: visual acuity.

VEGF: vascular endothelial growth factor

PROTOCOL

Protocol of thesis

Diabetic retinopathy is the most common microvascular complication of diabetes and remains one of the leading causes of blindness worldwide among adults aged 20-74 years. The two most important visual complications of diabetic retinopathy are diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR). The occurrence of retinal new vessels (NVs) represents an important risk factor for severe vision loss in patients with diabetes mellitus. About 60% of patients with proliferative diabetic retinopathy (PDR) respond to pan retinal photocoagulation (PRP) with regression of neovascularization within 3 months (DRS 1981). However, many patients require additional laser treatment and 4.5% ultimately require pars plana vitrectomy despite PRP (Flynn et al 1992). Although severe central vision loss resulting from PDR can be prevented with PRP in most cases, this destructive, often painful, laser procedure may be associated with decreased peripheral vision and increased risk of macular edema (ETDRS 1991).

Vascular endothelial growth factor (VEGF) has been implicated in the pathogenesis of human eye diseases characterized by neovascularization and blockage of VEGF has been associated with the inhibition of iris neovascularization and suppression of retinal NV formation in primates (Aiello et al 1995, Adamis et al studies demonstrated that intravitreal injection of bevacizumab (IVB) resulted in marked regression of retinal and iris neovascularization, and rapid resolution of vitreous hemorrhage in patients with PDR (Arevalo et al 2009). But this effect appears to be transient and reinjection is required after 12 weeks. In addition, IVB injection was demonstrated to be an effective adjunctive treatment to PRP in the treatment of PDR. Intravitreal bevacizumab injection before PRP was found to be beneficial in preventing PRP-induced visual dysfunction and foveal thickening and was associated with a greater reduction in the area of active leaking new vessels than PRP alone in patients with PDR (Tonello et al 2008, Cho et al 2009).

Therefore, in the present study, we aim at compare the possible synergistic effects of intravitreal bevacizumab when used in combination with PRP to the effect of PRP alone in the treatment of patients with PDR.

Aim of the work

To evaluate the effects of pan retinal photocoagulation (PRP) alone compared with PRP plus intravitreal injection of 1.25 mg of bevacizumab regarding regression of new vessels and possible complications.

Patients and methods

Thirty eyes with PDR will be included into this clinical trial, which will be randomly divided into two groups; group (1) patients will receive PRP only and in group (2) will receive PRP plus Intravitreal bevacizumab injection of 1.25 mg in 0.05 ml.

-Inclusion criteria:

Patients with proliferative diabetic retinopathy.

-Exclusion criteria:

- 1. Central macular thickness more than 300 um.
- 2. Ischemic type of macular edema.
- 3. Previous PRP.
- 4. Recent intraocular surgeries or intravitreal injections within the last 3 months.
- 5. Media opacity (eg. corneal opacity, cataract, vitreous hemorrhage) that interferes with the proper evaluation of the posterior segment.
- 6. Contraindications to fluorescein angiography (pregnancy, allergy to fluorescein dye, renal failure).
- 7. Retinal detachment.
- Chosen patients will be subjected to :-
- a- Detailed general and ocular history.

- b- Full ophthalmological examination including BCVA, slit-lamp examination, and fundus biomicroscopy.
- c- Baseline Fundus fluorescein angiography.
- d- Baseline Optical coherence tomography to measure central macular thickness.
- e- Treatment will be applied as follows:
 - Group 1: PRP as recommended by ETDRS (1200 to 1600 burns of moderate intensity, 500-µm size, one-half to one spot diameter spacing at 0.1 second duration, divided over at least two sessions).
 - Group 2: Intravitreal injection of bevacizumab (1.25 mg in 0.05 ml) one week before starting PRP (same settings as group 1).
- f- Follow up by:
- Change in log MAR BCVA.
- Change in total area of fluorescein leakage from new vessels in fluorescein angiography at the weeks 4 and 12.
- OCT to measure change in the central macular thickness at the weeks 2, 4 and 12.

REVIEW OF LITERATURE