

Ain Shams University

Faculty of Engineering

Electronics and Communications Engineering Department

Amorphous Semiconductors Characteristics and Their Modern Application

A Thesis Submitted for the award of the degree of philosophy (Ph.D.)

$\mathbf{B}\mathbf{y}$

Amany Abou Elseoud Elshazly

M.Sc.in Computer and Systems Engineering (2002). Engineering and Scientific Instrument Department, Atomic Energy Authority.

Supervised By

Prof. Dr. Abdelhalim Zekry

Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University.

Prof.Dr.Sayed Mohamed Sayed Elarabi

Engineering and Scientific Instrument Department Nuclear Research Center, Atomic Energy Authority

Prof.Dr. Hatem.Hassan. Amer

Solid State and Electrons Accelerator Department, National Center for Radiation Research and Technology, Atomic Energy Authority

Cairo 2013

Ain Shams University Faculty of Engineering Electronics and Communications Engineering Department

Judgment Committee

Name: Amany Abou Elseoud Elshazly

Thesis: Amorphous Semiconductors Characteristics and Their Modern Application

Degree: Philosophy (Ph.D) of Science in Electrical Engineering

Name, Title Affiliation

Signature

Prof. Dr. Christian GONTRAND INSA de Lyon, Université de Lyon

Prof. Dr. Adel Ezzat Mohamed El-Hennawy

Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University.

Prof. Dr. Abdelhalim Abdelnaby Zekry

Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University.

Prof. Dr. Hatem Hassan Amer

Solid State and Electrons Accelerator Department, National Center for Radiation Research and Technology, Atomic Energy Authority

Date: /

Acknowledgment

I would like to express my gratitude to Prof. Dr. Abdelhalim Zekry, professor of Electronics and Communications Engineering Department, Faculty of Engineering Ain Shams University for guidance, assistance and encouragement during the period the work undertaken in this thesis.

I would like to express my sincere appreciation to Associate Prof. Hatem.Hassan. Amer, Solid State Department, National Center for Radiation, Atomic Energy Authority for suggesting the point of research carried out in this thesis, supervision, interesting discussion, continuous and comprehensive follow up during all phases of carrying out this work.

I would like to express my gratitude to Prof. Dr. Sayed Mohamed Sayed Elarabi, Engineering and Scientific Instrument Department, Nuclear Research Center, Atomic Energy Authority for guidance, assistance and encouragement during the period the work undertaken in this thesis.

I would like to thank Dr.Karima Ezz El-Din Mohamed Ghareeb, Metallurgy Dep., Nuclear Research Center, Atomic Energy Authority for her Kind help concerning obtaining necessary reference papers of this work and analysis the resultes.

I am also greatly indebted to Prof. Dr. L.F. Foad Fikri, Atomic Energy Authority for her advice and encouragement.

I would like to express my gratitude to faculty staff at Ain Shams for its financial, technical and time support.

I would like to thank all staff and members of solid state and Electrons Accelerator department, NCRRT, AEA, for help and support.

Thanks are also due to personal and staff of Engineering and Scientific department, NRC, AEA, for the facilities offered during realizing this thesis.

My family unlimited and continued encouragement was actually the true and real support which pushed me up to finish my work and complete this thesis, so I could not say better than" God Bless Them".

Abstract

Chalcogenide glasses are a recognized group of inorganic glassy materials which always contain one or more of the chalcogenide elements S, Se or Te but not O, in conjuction with more electro positive elements as As, Sb, etc.

Chalcogenide glasses are generally less robust, more weakly bonded materials than oxide glasses. Glasses were prepared from Sb, Se, Bi and In elements with purity 99.999%. These glasses are reactive at high temperature with oxygen. Therefore, synthesis was accomplished in evacuated clean silica tubes. The tubes were washed by distilled water, and then dried in a furnace whose temperature was about 100°C.

The weighted materials were introduced into the cleaned silica tubes and then evacuated to about 10⁻⁴ torr and sealed. The sealed tubes were placed inside the furnace and the temperature of the furnace was raised gradually up to 900°C within 1 hour and kept constant for 10 hours. Moreover, shaking of the constituent materials inside the tube in the furnace was necessary for realizing the homogeneity of the composition. After synthesis, the tube was quenched into ice water. The glassy ingots could be obtained by drastic quenching. Then materials were removed from the tubes and kept in dry atmosphere. The proper ingot was confirmed to be completely amorphous using

x-ray diffraction and differential thermal analysis. Thin films of the selected compositions were prepared by thermal evaporation technique under vacuum 10⁻⁴ torr with constant thickness 100 nm. The effect of radiation, optical and some other effects on composition were studied.

The structural properties of $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ amorphous semiconductor in the powder and thermally evaporated thin films have been investigated. Differential Thermal Analysis, DTA, for $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ in the powder form showed that an endothermic peak in the DTA curve results from an increase in specific heat at the glass transition temperature T_g . The absence of any sharp exothermic peak in the DTA curve is good indicator for absence of the structural changes. The analysis of X-Rays Diffraction Patterns (XRD) of $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ in the powder form confirmed amorphous state. Scanning electron microscope SEM micrographs were made for Se-Bi-Sb films deposited at room temperature. The film consisted of individual grains, which are irregular in size and shape and separated by well-defined inter-grain boundaries. By adding In, further separation of the surrounding media gives rise to large grains in size at x=10 at%. Then large grains can be seen for partially crystalline at x=20 at% the grain sizes become smaller for x=30 at% and the number of grains become larger.

The density of the as prepared glasses of the system $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ films has been determined by the hydrostatic method with an accuracy of \pm 0.05 %. It has been noticed that the density increases by increasing In from 5.691 gm/cm³ for the composition $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ at x=0% to 5.786 gm/cm³ for composition $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ at x=30%.

The optical properties of $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ have been characterized by the measurements of the transmittance and reflectance in the wave length 200-1100 nm for the deposited films. The type of the electronic transition responsible for optical properties is indirect allowed transition with transport and onset energy gap in the range $1.89x10^{-3}-1.79\ x10^{-3}\ eV$. The values of the optical energy gap E_{opt} were found to decrease with increasing In content which could be due to the fact that In has a metallic behaviour.

The absorption spectra of $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ is recorded in the UV region. Some important parameters such as coordination number N_{co} , the number of constraints (N_S) , the parameter (r) determined the deviation of Stoichiometry. If there is a linear dependence between the bond strength and the average band gap, and if one allows their superposition to describe the compounds, then the addition of In will affect the average band gap. By increasing the In content, the average bond strength of the compound decreases, and hence E_g will decrease. In order to emphasize the relationship between E_g and the average bond strength more clearly, E_g is compared with H_S/N_{co} which is the average single-bond energy in the alloy.

The electrical properties of $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ alloys include the measurements of DC conductivity for $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ films and the measurements of switching. The DC conductivity of $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ thin films has been measured as function of temperature. The dependence of the electrical DC conductivity on the temperature showed the existence of two distinct linear regions with two activation energies ΔE_1 and ΔE_2 .

The switching measurements have been made for Sb₂₀Bi₂₀Se_(60-x)In_x thin films and the addition of In has led to an increase in both the threshold voltage (V_s) and threshold current (I_s) from 1.6 volt and 1.2 µA respectively at x=0 up to 5.8 volt and 2.5 μA respectively at x=30 for constant film thickness d=100 nm. As for the holding voltage (V_h), it was found to increase with the increase of In content from 0.3 volt at x=0 to 4.8 volt at x=30. On the contrary, the increase of In content has caused a decrease in the holding current (I_h) from 48 μ A at x=0 to 18 μ A at x=30 for a constant thickness 100 nm. It was proved that the threshold power increased by increasing In This means that the quality of switching is reduced by increasing the In content. The addition of In content decreases the cohesive energy and consequently affects the switching properties. Raising the film temperature improved the switching characteristics where the threshold voltage decreased and the threshold current increases. Also, the addition of In reduced the filament temperature, thus reducing the switching ability. Increasing the In content from x=0 to 10, 20 and 30 led to an increase in the switching rise time from $t_r = 25$ to 40, 100 and 200 nano second respectively and a decrease in the cohesive energy from C.E. = 3.884 to 3.607, 3.329 and 3.053 eV respectively. These results indicate that composition Sb₂₀Bi₂₀Se_(60-x)In_x shows good electrical threshold switching results and promises a useful threshold switching device in computer applications and memory.

Finally, the study of effect of gamma rays on the $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ showed that the gamma radiation did not have a noticeable effect, for a dose of 15MRad showed a constant value in the transmittance upon the addition of In.

Subject Contents Page number

List of Figures	iv
List of Tables	vii
List of Symbols	ix
List of abbreviations	xii
Abstract	xii
Chapter I Introduction and Literature Survey	
1.1. Introduction	1
1.2. Literature Survey	5
1.3. Aim of the Work	13
Chapter II Theoretical Background	15
2.1. Disordered systems	15
2.2. The Chalcogenide Glasses	15
2.3. Electronics Band Structure and Defects	16
2.3.1. Types of Defects	20
2.4. Optical Properties of Amorphous materials	23
2.4.1. Optical Absorption Mechanisms	23
2.4.2. Absorption Edge	26
2.5. The Electrical Properties of Chalcogenide Glasses	28
2.6. Switching in Alloys Glasses	30
2.7. Radiation Sources	32
2.7.1. Gamma Radiation	32
2.7.2. Interaction Of Gamma Radiation with Matter	33
2.8. Radiation Effects on Solids	35
2.8.1. Defect Production by Gamma – Rays	38

Chapter III Experimental Techniques	39
3.1. Preparation of Bulk compositions	39
3.2. Preparation of Thin Films	42
3.3. Methods for Thin Film Thickness Measurement	45
3.3.1.Quartz crystal thickness monitor technique	45
3.4. Density Determination	46
3.5. Structure Measurements	47
3.6. Optical Measurements	54
3.7. Electrical Measurements	54
3.8.Preperation of Thin Film for Switching Measurements	57
3.9. Spectrophotometer Measurements	60
3.10 Gamma Irradiation Source	61
Chapter IV Results and Discussion	63
4.1. X-ray Diffraction Identification of Bulk Samples	63
4.2. Scanning electron microscope technique	64
4.3. Differential Thermal Analysis (DTA)	65
4.4. The Density dependence of (In) content	67
4.5. Optical Band Gap of Sb-Bi Se- In Thin Films	68
4.6. The Effect of In Content on Conductivity	78
4.7. Switching Characteristics of Amorphous Semiconductor.	81
4.7.1.Temperature dependence of Switching	84
Characteristics	
4.8. Theoretical Study of I-V Characteristics of Switching	86
4.8.1.The Suggested Switching Model	88
4.9. Thermal and Radiation-induced defects in thin film	90
devices.	
4.10. Effect of Gamma-Irradiation on Optical Band Gap	90
4.10.1. Effect of Gamma-Irradiation on Threshold	90
Switches	

4.11. Modern Applications of Sb ₂₀ Bi ₂₀ Se _(60-x) In _x	91
4.12. Trends for Future Work	93
Chapter V Conclusion and Recommendations	94
References	97
List of Publications	

List of Figures

Figure No.	Title	Page No.
(2-1)	Showing bonding in (a) Ge and (b) Se	17
(2-2)	Shows various forms proposed for the density of states in amorphous semiconductors. The shaded areas represent localized states.	19
(2-3)	Formation of charged defects (valence alternation pairs) in chalcogenide glasses.	21
(2-4)	(a) Illustration of the formation of threefold	21
	coordination D^+ (C^+) and single coordinated D^- (C^- ₁) defect centers by exchange of an electron between two D^o (C^o ₁) centers. (b) Configuration – coordinate diagram for the formation of D^+ - D^- p.	
(2-5)	Absorption spectrum of thin film	24
(2-6)	Optical inter band transitions (a) Direct	26
	(b) Indirect band semiconductor.	
(2-7)	Parts A, B, C of the absorption edge	27
(2-8)	Current – Voltage characteristic curve (I-V)	30
	of switch I _h denote current	
(2-9)	Dynamic (I-V) characteristic curve for thin film	31
	of amorphous semiconductor (Memory switch)	
(2-10)	The interaction of gamma rays with matter probabilities	35
(2-11)	Mechanism of the interaction of gamma rays	35
	with matter	
(3-1)	Silica tubes used for bulk amorphous semiconductors	40
	preparation.	
(3-2)	Design flowchart for Preparation of bulk amorphous	41
	$Sb_{20} Bi_{20}Se_{(60-x)}In_x$	
(3-3)	a) Schematic diagram b) captured photo Vacuum coating unit.	43

Figure No.	Title	Page No.
(3-4)	Design flowchart for Preparation of $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ Films	44
(3-5)	The copper mask designed for E-306A	44
(3-6)	Thicknesses monitor (TM-200)	45
(3-7)	X-ray diffractmeter, "Shimadzu XRD-6000"	48
(3-8)	Typical DTA thermogram illustrating the definition	50
	of the different transition temperature.	
(3-9)	Differential Thermal Analysis	51
(3-10)	Principle diagram of Differential thermal analysis	51
(3-11)	Design flowchart for DTA thin film Preparation	53
(3-12)	AJEOL-5400 Scanning Electron Microscope (SEM) with (EDX).	53
(3-13)	Shimadzu UV- 160ASpectrophotometer	54
(3-14)	Gold planar electrodes	55
(3-15)	Construction used for controlling the temperature of	56
	the sample in the Range from room to liquid nitrogen.	
(3-16)	Block diagram of the circuit used for measuring	56
	electrical conductivity	
(3-17)	Design flow for Preparation of thin film amorphous $Sb_{20}Bi_{20}Se_{(60\text{-}x)}In_x \text{for switching.}$	58
(3-18)	A special cell construction for I-V measurements	59
(3-19)	A Simple Circuit used for measuring I-V characteristics D.C	59
(3-20)	SP8 -200 Optical Diagram	60
(3-21)	J6500 Irradiator	62
(4-1)	X-Ray Diffraction patterns of bulk sample of the system $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ (where x=0, 10, 20 and 30 at.%)	63
(4-2)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	65
(4-3)	$\begin{array}{cccc} DTA & measurements & for & Sb_{20}Bi_{20}Se_{(60\text{-x})}In_x \\ glasses & \end{array}$	66
	heating rate 10c/min 0c/min.	
(4-4)	Dependence of density on In content in the system	67

Figure No.	Title	Page No.
. 10.	$Sb_{20}Bi_{20}Se_{(60\text{-x})}In_x$ (where x=0,10,20 and 30)	110.
(4-5)	$\label{eq:continuous_spectra} Transmission spectra of Sb_{20}Bi_{20}Se_{(60\text{-x})}In_x thin film \\ \dots \dots \dots$	72
	(where x=0, 10, 20,30 at.%) before using gamma radiation.	
(4-6)	$\begin{array}{cccc} Transmission & spectra & of & Sb_{20}Bi_{20}Se_{(60\text{-x})}In_x\\ thin & \end{array}$	72
	film (where $x = 0$, 10, 20,30 at.%) after using gamma radiation of 15 mega rad.	
(4-7)	Absorption coefficient of $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ thin film	73
	(where $x = 0$, 10, 20,30 at.%) before using gamma radiation.	
(4-8)	$\begin{array}{cccc} Optical & absorption & coefficient & of & Sb_{20}Bi_{20}Se_{(60\text{-}x)}In_x \\ \end{array}$	74
	thin film (where $x=0,\ 10,\ 20,30\text{mat.}\%$) after using gamma radiation of 15 mega rad.	
(4-9)	Best fit of $(\alpha h \upsilon)^{1/2}$ versus photon energy(h υ) for	74
	$Sb_{20}\ Bi_{20}Se_{(60-x)}\ In_x$ thin films where $x=0,\ 10,\ 20,30$ at.%) befor using gamma radiation.	
(4-10)	Best fit of $(\alpha h \upsilon)^{1/2}$ versus photon energy(h υ) for	75
(4-11)	Variation in the optical band gap (E_g) as function of	75
	In content for $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ thin films (where $x=0,\ 10,\ 20,30$ at.%).	
(4-12)	Variation of $\ln (\sigma)$ vs reciprocal absolute temperature	79
	for films of $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ where x=0, 10, 20 and	
	30 %at constant thickness 100nm.	
(4-13)	Variation of σ as a function of In content	80
(4-14)	Variation of of σ as a function of Activation energy	80
(4-15)	Variation of activation energy and cohesive energy	81
	as a function of In content.	

Figure No.	Title	Page No.
(4-16)	(I-V) Characteristics of D.C switching For the	83
	Films $Sb_{20}Bi_{20}Se_{(60-x)}In_x$ at const thickness 100nm.	
(4-17)	Static I-V Characteristics curves For x=0, 30at.%	84
	thin film sample at thickness 100 nm at different ambient temperature T.	
(4-18)	Relation between rise time and cohesive energy	90
(4-19)	Array of Sensors of the composition $Sb_{20}Bi_{20}Se_{(60\text{-}x)}In_x$	92
(4-20)	Solar Cell Array	93

List of Tables

Page No.
able (4-1):The composition dependence of density67
able(4-2): Shows values of the optical band gap, density,
able(4-3) : Some physical parameters as function of In
able(4-4) : Bond energy, probabilities and relative probabilities76 for formation of various bonds in Sb ₂₀ Bi ₂₀ Se _(60-x) In _x glasses, taking the probability of In-Se bond as unity.
Characteristic Quantities for the thin film glasses in the system Sb ₂₀ Bi ₂₀ Se _(60-x) In _x where x=0, 10, 20 and 30 at constant thickness 100 nm.
able(4-6) : Switching characteristics of the composition
switching as corresponding values of current for samples of the composition Sb ₂₀ Bi ₂₀ Se _(60-x) In _x where x= 0, 30 at thickness 100 nm.
able(4-8) : Values of rise time and cohesive energy for89