Ain Shams University

Improving the Coastal Groins Functional Design

Al Sayed Ibrahim Diwedar

PhD Thesis (insert number here) Month Year

Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department

"Improving the Coastal Groins Functional Design"

A Thesis Submitted for the Fulfillment of the Requirements of The Degree of Doctorate of Philosophy In Civil Engineer

By **Al Sayed Ibrahim Diwedar**

M.Sc in Civil Engineer (Coastal and Port Engineering) UNESCO-IHE, The Netherlands, 2005

Supervisors

Prof. Dr. Sonia Youssef El Serafy

Professor of Coastal Engineering Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University

Dr. Yasser Mohamed El Saie

Lecturer
Irrigation and Hydraulics Department
Faculty of Engineering
Ain Shams University

Dr. Abdelazim Mohamed Ali

Researcher
The Hydraulics Research Institute
The National Water Research
Centre.

Cairo 2009

EXAMINERS COMMITTEE

Name: Al Sayed Ibrahim Diwedar

Thesis: Improving the Coastal Groins Functional Design

Degree : Degree of Doctorate of Philosophy in Civil Engineering

(Irrigation and Hydraulics Department)

Name, Title, and Affiliation	Signature
Prof. Dr. Mohamed M. F. Sobeih Professor of Hydraulic Engineering Irrigation and Hydraulics Department Faculty of Engineering Monofia University	
Prof. Dr. Yehia Kamal Abdel Monim Professor of Irrigation and Drainage Engineering Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University	
Prof. Dr. Sonia Youssef. El Serafy Professor of Coastal Engineering Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University	

Date: / / 2009

Abstract

Coastal processes are too complex to understand. Coastal areas are naturally stable (natural equilibrium). Any human interference with the coastal system disturbs its natural equilibrium, causing erosion for the shoreline.

Coastal protection structures and shore stabilizing structures pops up as measures to counteract the resulting problems of the human interaction with the coastal area. There are different types of these coastal protection structures, some of these structures are used to counteract the cross-shore and long-shore erosion problem.

The coastal groin structure is used to face the alongshore erosion problems. It is known as a shore stabilizing structure, which is set perpendicular to the shoreline and is connected to it (attached groins). This groin has negative impacts at its down-drift; erosion takes place till a non eroding point. This puts a limitation to the groin structure in practice. Different types of groins according to the construction material and the shape are available.

The design process of the coastal groins is divided into two steps, the functional design and structural designs (which depends on the forces applied on the groin).

The functional design of the coastal groins is not defined with mathematical equations, its designed based on experience. The design process does not take into consideration the climate of the area. This Research was thus initiated to:

- 1. propose a new groin alignment (detached groin)
- 2. reduce the down-drift erosion
- 3. improve the functional design using a physical model in order to formulate reliable design equations to determine the groin length (L), the groin spacing (X), and the distance from shoreline (Y).

The results showed that the new proposed groin alignment (detached groin) gives better results than the normal groin from the hydrodynamical point of view. The proposed alignment reduced the down-drift erosion. The case, where the wave angle of approach equals to 30° using a groin length of 110m with groin spacing of 330m and offshore distance of 44m, reduced wave height at up and down-drift, so as in between the groins.

This alignment produced an acceptable current pattern relative to other tested alignment. The short term morphological changes showed that the detached groins system performs better than the attached groins system. Also three mathematical equations were formulated to be used in the groins functional design to determine the groins parameters, and these equations connect the design process to the wave climate in the project area.

Keywords:

Coastal groins, Functional design, Groins alignment, alongshore protection.

Acknowledgements

First of all I would like to direct my thanks to ALLAH the exalted and grateful who provided me with power to complete my study. That I hope it would be useful for the man kind.

Deep thanks are due to be expressed to Prof. Dr. Sonia El Serafy who supported the formulation of my PhD Research. Also I am grateful to Dr. Abdel Azim with his long experience in modelling who directed, advised and supported me during my experimental work and all through the thesis. My great thanks to Dr. Yasser El Saee who helped me through out the study.

I would further like to thank all those who helped me in my works even those I contacted them verbally. Grateful acknowledgment is also due to the Hydraulics Research Institute (HRI) staff especially Eng. Ibrahim El-Desouky for providing the needed equipments and facilities to complete my work Research. Special thanks to my colleague Eng. Amel Azab for her assistance and advice through my study.

Finally I dedicate this thesis and my success to my family and my fiancé for supporting me all through my study.

Thanks to all!!

Table of Contents

List of Figures	•••••
List of Tables.	
List of Photos.	••••••
List of Symbols	••••••
1 Introduction	1-1
1.1 Problem definition	1-1
1.2 Research objectives	1-2
1.3 Research methodology	
1.4 Thesis layout	1-3
2 Literature Review	2-1
2.1 Sediment transport	2-1
2.1.1 Alongshore Transport	
2.1.2 Cross-Shore transport	
2.1.2.1 Cross-shore transport interaction with structure	
transport limitation.	
2.2 Coastal Measures	
2.2.1 Reasons for implementing protection works	
2.2.1.1 Natural causes	
2.2.1.2 Man-induced causes	
2.3 Types of Coastal protection works	
2.3.1 Breakwaters	
2.3.2 Seawalls, bulkhead, and revetment	
2.3.3 Groins	
2.3.3.1 History of groins	
2.3.3.2 Previous work	
2.3.3.3 Groin shoreline interaction	
2.3.3.4 Types of groins	
2.3.3.5 Design of coastal groins	
2.4 Comments	. 2-34
3 Physical Model	3-1
3.1 Facilities	
3.1.1 Wave basin	
3.1.2 Wave generator	
3.2 Measurements devices	3-2

3.2.1 Wave height meter (WHM)	3-3
3.2.2 Electro-Magnetic current meter (EMS)	3-4
3.2.3 Point Gauge	3-4
3.3 Model construction	3-5
3.3.1 Similarity parameters	3-8
3.3.2 Movable bed material	
3.4 Experimental Work	3-10
3.5 Model preparation and operation of wave generator	3-10
3.5.1 AUKE/pc Software	
3.5.2 Generation of wave files	3-10
3.5.3 Preparation stage	
3.5.3.1 Defining the Measuring devices	
3.5.3.2 Creating Test Run files	
3.5.3.3 Test Run calibration	
3.5.4 Steering Stage	
3.5.5 Data acquisition	
3.5.6 Data processing stage	
3.6 Model calibration	
3.7 Experimental test program	
3.7.1 Hydrodynamic measurements	
3.7.2 Test Run and Measurements	
3.7.3 Morphological Measurements	3-16
3.8 Comments	
A Evrovimental Desults	4-1
4 Experimental Results	
4.1 Model runs in the absence of groins	
4.2 Modelling results	
4.2.1 Hydrodynamic results	
4.2.2 Morphological Results	4-32
5 Results Analysis	5-1
5.1 Hydrodynamic Results Analysis	5-1
	5-1
5.1.1.1 Case of groin length of 50m	5-1
5.1.1.2 Case of groin length of 80m	
5.1.1.3 Case of groin length of 110m	
5.1.2 Current Pattern Analysis	
5.1.3 Wave Height Analysis	
5.1.3.1 Case of attached groins alignment	
5.1.3.2 Case of detached groins alignment	
5.2 Morphological Changes Analyses	

5.2.1 Morphological bed changes under normal	wave condition of
1.5 m	5-41
5.2.2 Morphological bed changes under storm wa	ve condition of 3.5
m	
5.2.3 Morphological bed changes under extreme	wave condition of
5.5 m	
5.3 Statistical analysis	5-47
5.3.1 Offshore Distance (K)	5-48
5.3.2 Groin Length (L)	5-48
5.3.3 Groin Spacing (X)	
5.4 Equations verification	
5.5 Research Limitations	5-51
5.6 Comparative Study	5-52
5.7 Comments	5-55
6 Conclusion and Recommendations	6-1
6.1 Conclusions	6-1
6.2 Recommendations	6-3
6.2.1 Further Research	6-3
6.2.2 Practical recommendations	6-3
0.2.2 Fractical recommendations	0-3
References	
	•••••••••••••••••••••••••••••••••••••••
References	••••••••••••

List of Figures

Chapter 1	
Figure 1-1 HRI wave basin	1-3
Chapter 2	
Figure 2-1Long-shore and Cross Shore Current	2-9
Figure 2-2 Wave profile	
Figure 2-3 Parameters controlling the groins function.	2-25
Figure 2-4 Principle of groins field	
Figure 2-5 Groins shape	
Figure 2-6 Groin profile	
Figure 2-7 Groin layout	2-32
Figure 2-8 Groin transition	
Chapter 3	
Figure 3-1 Wave basin and the wave generator layout	3-1
Figure 3-2 Model layout and instrument location	
Figure 3-3 Bed slope configuration	3-6
Figure 3-4 Bed profile	
Figure 3-5 Groin cross section	
Figure 3-6 Test program for one wave angle and one wave height	3-14
Figure 3-7 Groins parameters	3-15
Figure 3-8 Cross section location	3-17
Chapter 4	
Figure 4-1 Measured current velocity and wave height for L=50m	ı, X=L,
and wave angle 15° for different offshore distance K	4-6
Figure 4-2 Measured current velocity and wave height for L=50m,	X=2L,
and wave angle 15° for different offshore distance K	4-7
Figure 4-3 Measured current velocity and wave height for L=50m,	X=3L,
and wave angle 15° for different offshore distance K	4-8
Figure 4-4 Measured current velocity and wave height for L=80m	ı, X=L,
and wave angle 15° for different offshore distance K	4-9
Figure 4-5 Measured current velocity and wave height for L=80m,	X=2L,
and wave angle 15° for different offshore distance K	4-10
Figure 4-6 Measured current velocity and wave height for L=80m,	X=3L,
and wave angle 15° for different offshore distance K	4-11
Figure 4-7 Measured current velocity and wave height for L=110m	
and wave angle 15° for different offshore distance K	4-12
Figure 4-8 Measured current velocity and wave height for L=	
X=2L, and wave angle 15° for different offshore distance K	4-13

Figure 4-9 Measured current velocity and wave height for L=110m,
X=3L, and wave angle 15° for different offshore distance K
Figure 4-10 Measured current velocity and wave height for L=50m, X=L,
and wave angle 30° for different offshore distance K 4-15
Figure 4-11 Measured current velocity and wave height for L=50m,
X=2L, and wave angle 30° for different offshore distance K 4-16
Figure 4-12 Measured current velocity and wave height for L=50m,
X=3L, and wave angle 30° for different offshore distance K 4-17
Figure 4-13 Measured current velocity and wave height for L=80m, X=L,
and wave angle 30° for different offshore distance K 4-18
Figure 4-14 Measured current velocity and wave height for L=80m,
X=2L, and wave angle 30° for different offshore distance K 4-19
Figure 4-15 Measured current velocity and wave height for L=80m,
X=3L, and wave angle 30° for different offshore distance K
Figure 4-16 Measured current velocity and wave height for L=110m,
X=L, and wave angle 30° for different offshore distance K
Figure 4-17 Measured current velocity and wave height for L=110m,
X=2L, and wave angle 30° for different offshore distance K
Figure 4-18 Measured current velocity and wave height for L=110m,
X=3L, and wave angle 30° for different offshore distance K
Figure 4-19 Measured current velocity and wave height for L=50m, X=L,
and wave
Figure 4-20 Measured current velocity and wave height for L=50m,
X=2L, and wave angle 45° for different offshore distance K
Figure 4-21 Measured current velocity and wave height for L=50m,
X=3L, and wave angle 45°4-26
Figure 4-22 Measured current velocity and wave height for L=80m, X=L,
and wave angle 45° for different offshore distance K
Figure 4-23 Measured current velocity and wave height for L=80m,
X=2L, and wave angle 45° for different offshore distance K
Figure 4-24 Measured current velocity and wave height for L=80m,
X=3L, and wave angle 45° for different offshore distance K
Figure 4-25 Measured current velocity and wave height for L=110m,
X=L, and wave angle 45° for different offshore distance K
Figure 4-26 Measured current velocity and wave height for L=110m,
X=2L, and wave angle 45° for different offshore distance K
Figure 4-27 Measured current velocity and wave height for L=110m,
X=3L, and wave angl45° for different offshore distance K
Figure 4-28 Morphological changes at CS1 under different wave climate
A 22

Figure -	4-29 N	Morphological	chang	ges at	CS2	under	differe	nt wave	climate 4-34
Figure	4-30 N	Morphological	chang	ges at	CS3	under	differe	nt wave	
Figure	4-31 N	Morphological	chang	ges at	CS4			nt wave	climate 4-36
Figure	4-32 N	Morphological	chang	ges at	CS5	under	differe	nt wave	climate
Figure	4-33 N	Morphological	chang	ges at	CS6	under		nt wave	
Figure	4-34 N	Morphological	_				differe	nt wave	
		Marrele ala ai aal					d: 66		
riguie	4-33 r	Morphological	····	ges at				m wave	
Figure	4-36 N	Morphological	chang	ges at	CS9	under	differe	nt wave	climate 4-41
Figure	4-37	Morphologic	al cha	anges	at	CS10	under	differen	t wave
climate									4-42
Figure climate		Morphologic	al cha	anges	at	CS11	under	differen	t wave 4-43
Figure	4-39	Morphologic		_		CS12	under	differen	t wave
ciimate	4 40		1 1	•••••			1	1: 00	4-44
		Morphologic							
		Morphologic							
climate									4-46
_		Morphologic	al cha	anges	at	CS15	under	differen	
climate				•••••				1: 00	4-47
_		Morphologic	al cha	anges	at	CS16	under	differen	t wave
		Morphologic	al cha	anges	at	CS17	under	differen	
									4-49
_		Morphologic		_					
_		Morphologic		_					
_		Morphologic		_					t wave 4-52
		Morphologic							
_				_					