EVALUATION OF OCCUPTIONAL EXPOSURURE TO ETHYLENE OXIDE (ETOx) AND ITS EFFECTS ON WORKERS IN THE FIELD OF MEDICAL PRODUCTS STERILIZATION

By

Ahmed Hamdy Mustafa Hussein B.Sc. Science. (Biochemistry), Ain Shams University, 1993

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Science
Department of Basic Science

Under The Supervision of:

1- Dr. Mahmoud Ahmed Ibrahim Hewehy

Prof. Of Public Health, Basic Science Department, Institute of Environmental Studies and Research, Ain Shams University.

2- Dr. El-Sayed El-Okda

Lecturer of Occupational and Environmental Health, Faculty of Medicine, Ain Shams University.

3- Dr. Aly Fahmy Mohamed El-Said

G. M. of Applied Virology Research Sector, VACSERA.

Abstract

Name : Ahmed Hamdy Mustafa Hussein.

Title of thesis : Evaluation of occupational exposure

to ethylene oxide (EtOx) and its effects

on workers in the field of medical products

sterilization.

Degree : M.Sc. in Environmental Science, Basic

Science Department, Institute of

Environmental Studies &

Research, Ain Shams University.

Ethylene oxide gas (EtO) represents an important hazardous industrial gas for the contact workers during the sterilization of the medical products. More recent work has focused on aspect of its harmful effects on exposed persons. Thus, the studying of the immunological parameters in exposed blood persons may help to predict the bad effects and these parameters like: immunoglobulin G (IgG) concentration and the clusters of differentiation subsets (CDs). Also, studying the hematological changes can give a good mirror of the general health of these contact persons; these parameters like: hemoglobin concentration (Hb), platelets count (PLT) and total leukocyte count (TLC). Finally, the hazardous effects of gas exposure may be clarified in studying the cancer incidence probability; studying of the p53 gene mutations is considered one of the further steps to know how to control these bad effects.

Acknowledgement

First and foremost thanks to GOD for helping me to fulfill this work.

I would like to express my sincere appreciation and deepest gratitude to **Prof. Dr. Mahmoud Ahmed Ibrahim Hewehy,** Prof. of Public Health, Basic Science Department, Institute of Environmental Studies and Research, Ain Shams University. for his kind supervision, continuous encouragements and generous attitude.

In the mean time I would to express my deepest gratitude to **Dr. EI-Sayed EI-Sayed EI-Okda**, Lecturer of Occupational and Environmental Health, Faculty of Medicine, Ain Shams University for his great help assistance supported me to accomplish this study.

Also, I am so greatly indebted to **Dr. Aly Fahmy Mohamed El-Said**, General Manager of Applied Virology Research Sector, VACSERA for his supervision, Instructive Criticism, invaluable assistance and meticulous revision of all details of this Thesis.

Warms words of thanks to my **Father, Mother, Sister** for their love, Encouragement and for their cheerful spirit.

------Contents-----

Contents

<u>Page</u>
List of AbbreviationsI
List of TablesIII
List of FiguresV
Introduction and Aim of the Work1
Review of Literature
The Ethylene oxide (EtO) gas nature4
General properties of the Ethylene Oxide gas5
(a) The Physical Properties5
(b) The Chemical Structure6
(c) The Chemical Properties
Production of the Ethylene Oxide gas8
The storage of the Ethylene Oxide9
Uses of the ethylene oxide gas10
Measuring of the ethylene oxide gas10
The Ethylene Oxide derivatives and its uses12
Fate of the ethylene oxide in the environment13
Residual levels of the ethylene oxide gas in different14
Populations and public health effects

Contents

Occupational exposure to the ethylene oxide gas31
and its hazardous effects
(I)The ethylene oxide gas exposure and hazardous31
Immune-toxicological effects
(II) The ethylene oxide gas and the hazardous39
Hematological changes
(III) The ethylene oxide gas exposure and its42
Genotoxicity
(IV) The ethylene oxide gas exposure and relative46
Biological markers changes
(V) The ethylene oxide gas exposure and related51
Hazardous physiological effects
Materials and Methods
(1)Socio-medical questionnaire fulfillment for the study57
Population
(2) Air monitoring57
(3) The laboratory investigations59
(a)Total Leukocyte (TLC) and Platelets61
Count (PLT)
(b) Hemoglobin estimation64

Contents	
(c) Estimation of serum Immunoglobulin IgG69	5
Concentration	
(d) Immunephenotyping assessments of CD3, CD46	6
and CD8 using flowcytometery technique	
(e) Detection of p53 gene mutations using6	8
PCR technique	
Statistical Methods75	5
Results77	7
Discussion113	3
Summary and conclusion126	6
References13	2
Arabic Summary	

List of Abbreviations

Btu British Thermal Unit.

CA Chromosomal aberrations.

CAD Coronary Artery Diseases

CDs Clusters of differentiation subsets.

CEA Carcino embryonic antigen.

CNS Central nervous system.

DNA Deoxy ribonucleic acid.

ECH Ethylene Chlorohydrins.

EDTA Ethylene di-amine tetra acetic acid.

EG Ethylene Glycol.

ELISA Enzyme Linked Immunosorbent-Assay.

EtO Ethylene oxide gas.

EPA Environmental Protection Agency.

Fc Fab fragments.

FCS Flow cytometery system.

FSC Forward angle scalter.

GC-MS Gas chromatography- Mass spectrometry.

GST Glutathione-s-transferase enzyme.

G-6-PD Glucose-6- phosphate dehydrogenase enzyme.

HAS Human Albumin Serum.

Hb Hemoglobin concentration.

HE Val Hemoglobin adducts N- (2- hydroxy ethyl)

valine.

IFN Inter-feron.

IgA Immunoglobulin –A.

IgD Immunoglobulin-D.

IgE Immunoglobulin-E.

IgG Immunoglobulin-G.

IgM Immunoglobulin-M.

LD50 Lethal Dose 50.

NER Nucleotide Excision Repair.

NLB Nuclei lysis buffer.

OSHA Occupational Safety And Health Agency.

ppm Part per million.

PCV Packed cell volume (hematocrite value).

PEL Permissible exposure limit.

PK Proteinase –K.

PLT Platelets count.

RBC Red blood cells.

RIA Radio Immune Assay.

SCE Sister- Chromatid exchanges.

S.D. Standard Deviation.

SPSS Statistical Package of Social sciences.

SSC Side angle light scalter.

SSCP Single Stranded Conformational Polymorphism.

STS Soft Tissues Sarcoma.

TLC Total Leukocyte count.

TWA Time Weighted Average.

UDS Unscheduled Deoxy ribonucleic acid synthesis.

WFI Water For Injection.

List of tables

<u>Table</u>	<u>Title</u>	<u>Page</u>
Table (1)	Glossary of the most CDs and its specificities	34
Table (2)	Primer sequences for p53 tumor suppressor gene exons from (5a- to – exon-8)	72
Table (3)	Ethylene oxide gas levels (ppm) during air Monitoring	77
Table (4)	Comparison between the studied groups as regard hemoglobin concentration by using one way ANOVA test	78
Table (5)	Comparison between the studied groups as regard Platelets count using one way ANOVA test	79
Table (6)	Comparison between the studied groups as regard total leukocyte count by using one way ANOVA test	80 ′
Table (7)	Comparison between the studied groups as regard total CD3 % by using one way ANOVA test	81 \
Γable (8)	Comparison between the studied groups as regard absolute CD3 count by using one way ANOVA test	82
Гable (9)	Comparison between the studied groups as regard total CD4 % by using one way ANOVA test	83
Гable (10)	Comparison between the studied groups as regard absolute CD4 count by using one way ANOVA test	84

Table (11)	Comparison between the studied groups as regard total CD8 % by using one way ANOVA test	85
Table (12)	Comparison between the studied groups as regard absolute CD8 count by using one way ANOVA test	86
Table (13)	Comparison between the studied groups as regard CD4/CD8 ratio by using one way ANOVA test	87
Table (14)	Comparison between the studied groups as regard IgG concentration by using one way ANO test	88 VA
Table (15)	The spectrum of p53 gene mutational changes	90

List of Figures

<u>Figure</u>	<u>Title</u>	<u>Page</u>
Fig. (1)	Production steps of the Ethylene Oxide gas	9
Fig. (2)	Metabolic transformations of the Ethylene	30
Fig. (3)	Correlation between working years (years) of study population exposed to ethylene Oxide gas and hemoglobin concentration	97
Fig. (4)	Correlation between working years (years) of study population exposed to ethylene Oxide gas and platelets count (10 ³ count/cm	97 im)
Fig. (5)	Correlation between working years (years) o study population exposed to ethylene oxide gas and total leukocytes count (10 ³ cell/cmm	
Fig. (6)	Correlation between working years (years) o Study population exposed to ethylene oxide and CD3%	
Fig. (7)	Correlation between working years (years) or Study population exposed to ethylene oxide gas and absolute CD3 (cells/cmm)	
Fig. (8)	Correlation between working years (years) o study population exposed to ethylene oxide and CD4 (%)	
Fig. (9)	Correlation between working years (years) of study population exposed to ethylene oxid and absolute CD4 (cells/cmm)	
Fig. (10)	Correlation between working years (years) Study population exposed to ethylene oxid	

and CD8 (%)

Fig. (11)	Correlation between working years (years) of study population exposed to ethylene oxide gas and absolute CD8 (cells/cmm)	101
Fig. (12)	Correlation between working years (years) and CD4/CD8 ratio	101
Fig. (13)	Correlation between working years (years) of study population exposed to ethylene oxide gas and IgG concentration (mg/dl)	102
Fig. (14)	Correlation between age (years) of study population exposed to ethylene oxide gas and hemoglobin concentrations (g/dl)	102
Fig. (15)	Correlation between age (years) of study Population exposed to ethylene oxide gas and platelets count (x10³count/cmm)	103
Fig. (16)	Correlation between age (years) of study population exposed to ethylene oxide gas and total leukocyte count (x10 ³ cells/cmm)	103
Fig. (17)	Correlation between age (years) of study population to ethylene oxide gas and CD3 (%)	104
Fig. (18)	Correlation between age (years) of study population exposed to ethylene oxide gas and absolute CD3 (cells/cmm)	104
Fig. (19)	Correlation between age (years) of study population exposed to ethylene oxide gas and CD4 (%)	105
Fig. (20)	Correlation between age (years) of study population exposed to ethylene oxide gas and absolute CD4 (cells/cmm)	105

Fig. (21)	Correlation between age (years) of study population exposed to ethylene oxide gas and CD8 (%)	106
Fig. (22)	Correlation between age (years) of study population exposed to ethylene oxide gas and absolute CD8 (cells/cmm)	106
Fig. (23)	Correlation between age (years) of study population exposed to ethylene oxide gas and CD4/CD8 ratio	107
Fig. (24)	Correlation between age (years) of study population exposed to ethylene oxide gas and IgG concentration (mg/dl)	107
Fig. (25)	Correlation between total leukocyte count (x10 ³ cells/cmm) and absolute CD3 (cells/cmm)	108
Fig. (26)	Correlation between CD4 (%) and absolute CD3 (cells/cmm)	108
Fig. (27)	Correlation between absolute CD4 (cells/cmm) and absolute CD3 (cells/cm	109 nm)
Fig. (28)	Correlation between CD8 (%) and absolute CD3 (cells/cmm)	109
Fig. (29)	Correlation between absolute CD8 (cells/cmm) and absolute CD3 (cells/c	110 cmm)
Fig. (30)	Correlation between CD8 (%) and CD4 (%)	110
Fig. (31)	Correlation between absolute CD8 (cells/cmm) and CD4 (%)	111
Fig. (32)	Correlation between absolute CD8 (cells/cmm) And absolute CD4 (cells/	111 cmm)

Fig. (33)	Correlation between CD4/CD8 ratio and absolute CD8 (cells/cmm)	112
Fig. (34)	Correlation between CD4/CD8 ratio and CD8 (%)	112

Introduction

Ethylene Oxide gas (EtO) is an important volatile industrial chemical. Its major importance in the heat -sensitive materials and products sterilization (*Nakata et al.*, 2004).

Although, EtO gas is a well-known sterilizing agent such as sterilizing bandages, sutures, surgical implements, oxygenators and tubing applied to heart surgery, the residual levels of EtO gas and ethylene glycol (EG), may be hazardous to the patients. Therefore, it must be removed by the aeration process (*Jordy et al., 2000 and Dias et al., 2009*).

The Ethylene oxide (EtO) gas is toxic to humans due to its epoxide forms hydroxyethyl adducts with macromolecules such as hemoglobin and DNA, so the gas is mutagenic in vivo and in vitro and carcinogenic in experimental animals (*Marczynski et al.*, 2006). Also in human , due to its capability of increasing the incidence of leukemia and/or lymphoma in the exposed persons (*Vincent et al.*, 2007).

Concurrently, EtO gas may cause reproductive failure if exposed personals were exposed in large quantities (Mendes et al., 2007 and Nancy et al., 2007).